BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8036859)

  • 1. [The morphogenesis of intramedullary cavities and of a glial-connective tissue cicatrix and the enzyme status of the proteolytic system in experimental spinal cord trauma].
    Ziablov VI; Lysenko VV; Zarechnyĭ VR; Rozgoniuk IuD
    Zh Vopr Neirokhir Im N N Burdenko; 1994; (1):30-4. PubMed ID: 8036859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of formation of intramedullary cavities and their role in the regeneration of the spinal cord].
    Ziablov VI; Lysenko VV; Rozgoniuk IuD
    Arkh Anat Gistol Embriol; 1986 Jan; 90(1):27-35. PubMed ID: 3954600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
    Zhang Z; Guth L
    Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reparative regeneration of cat spinal cord nerve fibers].
    Khrenov AP
    Arkh Anat Gistol Embriol; 1980 Jan; 78(1):50-8. PubMed ID: 7387409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Formation of spinal cord cicatrix under various experimental conditions].
    Khrenov AP
    Arkh Anat Gistol Embriol; 1984 Dec; 87(12):20-8. PubMed ID: 6525048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration in the human spinal cord: a review of the response to injury of the various constituents of the human spinal cord.
    Hughes JT
    Paraplegia; 1984 Jun; 22(3):131-7. PubMed ID: 6462738
    [No Abstract]   [Full Text] [Related]  

  • 7. Activation of embryonic intermediate filaments contributes to glial scar formation after spinal cord injury in rats.
    Kim DH; Heo SD; Ahn MJ; Sim KB; Shin TK
    J Vet Sci; 2003 Aug; 4(2):109-12. PubMed ID: 14610361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord transection: a quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin.
    Matthews MA; St Onge MF; Faciane CL; Gelderd JB
    Neuropathol Appl Neurobiol; 1979; 5(3):161-80. PubMed ID: 471188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord.
    Spilker MH; Yannas IV; Kostyk SK; Norregaard TV; Hsu HP; Spector M
    Restor Neurol Neurosci; 2001; 18(1):23-38. PubMed ID: 11673667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basal lamina formation at the site of spinal cord transection.
    Feringa ER; Kowalski TF; Vahlsing HL
    Ann Neurol; 1980 Aug; 8(2):148-54. PubMed ID: 6448569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promotion of neuronal recovery following experimental SCI via direct inhibition of glial scar formation.
    Parry PV; Engh JA
    Neurosurgery; 2012 Jun; 70(6):N10-1. PubMed ID: 22596003
    [No Abstract]   [Full Text] [Related]  

  • 13. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of fixation of the vertebral column for spinal cord injury experiments.
    Liu F; Luo ZJ; You SW; Jiao XY; Meng XM; Shi M; Wang CT; Ju G
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1666-71. PubMed ID: 12897489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Repair of acute spinal cord injury promoted by transplantation of olfactory ensheathing glia].
    Sun TS; Ren JX; Shi JG
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Apr; 27(2):143-7. PubMed ID: 15960254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous repair after spinal cord contusion injuries in the rat.
    Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W
    Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of cerebrospinal fluid serotonin and altered spinal cord blood flow in experimental trauma.
    Brodner RA; Dohrmann GJ; Roth RH; Rubin RA
    Surg Neurol; 1980 May; 13(5):337-43. PubMed ID: 7384998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of intramedullary cavitation following spinal cord injury: an experimental pathological study.
    Wagner FC; Van Gilder JC; Dohrmann GJ
    Paraplegia; 1977 Feb; 14(4):245-50. PubMed ID: 846751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the connective tissue scar in the transected rat spinal cord.
    Krikorian JG; Guth L; Donati EJ
    Exp Neurol; 1981 Jun; 72(3):698-707. PubMed ID: 7238718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.