BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 8037500)

  • 1. Animal models for osteoarthritis: processes, problems and prospects.
    Pritzker KP
    Ann Rheum Dis; 1994 Jun; 53(6):406-20. PubMed ID: 8037500
    [No Abstract]   [Full Text] [Related]  

  • 2. Osteoarthritis cartilage histopathology: grading and staging.
    Moskowitz RW
    Osteoarthritis Cartilage; 2006 Jan; 14(1):1-2. PubMed ID: 16242362
    [No Abstract]   [Full Text] [Related]  

  • 3. Terminology of osteoarthritis cartilage and bone histopathology - a proposal for a consensus.
    Pritzker KP; Aigner T
    Osteoarthritis Cartilage; 2010 Oct; 18 Suppl 3():S7-9. PubMed ID: 20864025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re: E. B. Hunziker. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage 2002; 10:432-63.
    Marijnissen AC; Lafeber FP
    Osteoarthritis Cartilage; 2003 Apr; 11(4):300-1; author reply 302-4. PubMed ID: 12681957
    [No Abstract]   [Full Text] [Related]  

  • 5. Spontaneous osteoarthritis in rhesus macaques. II. Characterization of disease and morphometric studies.
    Châteauvert JM; Grynpas MD; Kessler MJ; Pritzker KP
    J Rheumatol; 1990 Jan; 17(1):73-83. PubMed ID: 2313678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models of degenerative joint disease.
    Adams ME; Billingham ME
    Curr Top Pathol; 1982; 71():265-97. PubMed ID: 7116952
    [No Abstract]   [Full Text] [Related]  

  • 7. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress.
    Ea HK; Nguyen C; Bazin D; Bianchi A; Guicheux J; Reboul P; Daudon M; Lioté F
    Arthritis Rheum; 2011 Jan; 63(1):10-8. PubMed ID: 20862682
    [No Abstract]   [Full Text] [Related]  

  • 8. Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration.
    Piombo V
    Cell Biochem Funct; 2017 Jan; 35(1):3-11. PubMed ID: 28083966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Articular cartilage and subchondral bone changes in an experimental osteoarthritic model.
    Shoji H; D'Ambrosia RD; Dabezies EJ; Taddonio RF; Pendergrass J; Gristina AG
    Surg Forum; 1978; 29():554-6. PubMed ID: 401258
    [No Abstract]   [Full Text] [Related]  

  • 10. Osteoarthritis: a disease of the joint as an organ.
    Loeser RF; Goldring SR; Scanzello CR; Goldring MB
    Arthritis Rheum; 2012 Jun; 64(6):1697-707. PubMed ID: 22392533
    [No Abstract]   [Full Text] [Related]  

  • 11. New histological observations in spontaneously developing osteoarthritis in the STR/ORT mouse questioning its acceptability as a model of human osteoarthritis.
    Das-Gupta EP; Lyons TJ; Hoyland JA; Lawton DM; Freemont AJ
    Int J Exp Pathol; 1993 Dec; 74(6):627-34. PubMed ID: 8292560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilage, bone and synovial histomorphometry in animal models of osteoarthritis.
    Pastoureau PC; Hunziker EB; Pelletier JP
    Osteoarthritis Cartilage; 2010 Oct; 18 Suppl 3():S106-12. PubMed ID: 20864016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chondronecrosis induced in rhesus monkeys fed with grains and water of Kaschin-Beck's disease endemic area].
    Yang S
    Zhonghua Yi Xue Za Zhi; 1992 Jun; 72(6):361-2, 383. PubMed ID: 1332818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between articular cartilage damage and subchondral bone properties and meniscal ossification in the Dunkin Hartley guinea pig model of osteoarthritis.
    Thomsen JS; Straarup TS; Danielsen CC; Oxlund H; Brüel A
    Scand J Rheumatol; 2011; 40(5):391-9. PubMed ID: 21679094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease modification: promising targets and impediments to success.
    Matthews GL
    Rheum Dis Clin North Am; 2013 Feb; 39(1):177-87. PubMed ID: 23312415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of lentivirus-mediated siRNA targeting ADAMTS-5 on cartilage degradation in a rat model of osteoarthritis.
    Chu X; You H; Yuan X; Zhao W; Li W; Guo X
    Int J Mol Med; 2013 May; 31(5):1222-8. PubMed ID: 23546441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis.
    Chen R; Mian M; Fu M; Zhao JY; Yang L; Li Y; Xu L
    Am J Pathol; 2015 Nov; 185(11):2875-85. PubMed ID: 26355014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoarthritis in rhesus macaque knee joint: quantitative magnetic resonance imaging tissue characterization of articular cartilage.
    Gahunia HK; Lemaire C; Babyn PS; Cross AR; Kessler MJ; Pritzker KP
    J Rheumatol; 1995 Sep; 22(9):1747-56. PubMed ID: 8523356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis.
    Chia SL; Sawaji Y; Burleigh A; McLean C; Inglis J; Saklatvala J; Vincent T
    Arthritis Rheum; 2009 Jul; 60(7):2019-27. PubMed ID: 19565481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of different frequency treadmill exercise on lipoxin A4 and articular cartilage degeneration in an experimental model of monosodium iodoacetate-induced osteoarthritis in rats.
    Yang Y; Wang Y; Kong Y; Zhang X; Bai L
    PLoS One; 2017; 12(6):e0179162. PubMed ID: 28594958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.