These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 8037798)

  • 1. Ion permeation, divalent ion block, and chemical modification of single sodium channels. Description by single- and double-occupancy rate-theory models.
    French RJ; Worley JF; Wonderlin WF; Kularatna AS; Krueger BK
    J Gen Physiol; 1994 Mar; 103(3):447-70. PubMed ID: 8037798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore.
    Ravindran A; Kwiecinski H; Alvarez O; Eisenman G; Moczydlowski E
    Biophys J; 1992 Feb; 61(2):494-508. PubMed ID: 1312366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium.
    Worley JF; French RJ; Krueger BK
    J Gen Physiol; 1986 Feb; 87(2):327-49. PubMed ID: 2419487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of cardiac sodium channels by carboxyl reagents. Trimethyloxonium and water-soluble carbodiimide.
    Dudley SC; Baumgarten CM
    J Gen Physiol; 1993 May; 101(5):651-71. PubMed ID: 8393064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeation of Na+ through open and Zn(2+)-occupied conductance states of cardiac sodium channels modified by batrachotoxin: exploring ion-ion interactions in a multi-ion channel.
    Schild L; Moczydlowski E
    Biophys J; 1994 Mar; 66(3 Pt 1):654-66. PubMed ID: 8011896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethyloxonium modification of batrachotoxin-activated Na channels alters functionally important protein residues.
    Cherbavaz DB
    Biophys J; 1995 Apr; 68(4):1337-46. PubMed ID: 7787022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots.
    White PJ; Ridout MS
    J Membr Biol; 1999 Mar; 168(1):63-75. PubMed ID: 10051690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle.
    Spalding BC
    J Physiol; 1980 Aug; 305():485-500. PubMed ID: 6255148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium current inhibition by internal calcium: a combination of open-channel block and surface charge screening?
    Zamponi GW; French RJ
    J Membr Biol; 1995 Sep; 147(1):1-6. PubMed ID: 8531195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block of sodium channels in planar lipid bilayers by guanidium toxins and calcium. Are the mechanisms of voltage dependence the same?
    Krueger BK; Worley JF; French RJ
    Ann N Y Acad Sci; 1986; 479():257-68. PubMed ID: 2433995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of single acetylcholine-activated channels in BC3H-1 cells. Effects of trimethyloxonium and pH.
    Pappone PA; Barchfeld GL
    J Gen Physiol; 1990 Jul; 96(1):1-22. PubMed ID: 1698913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid surface charge does not influence conductance or calcium block of single sodium channels in planar bilayers.
    Worley JF; French RJ; Pailthorpe BA; Krueger BK
    Biophys J; 1992 May; 61(5):1353-63. PubMed ID: 1318097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels.
    Ravindran A; Schild L; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):89-115. PubMed ID: 1848885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels.
    Lyashchenko AK; Tibbs GR
    J Gen Physiol; 2008 Mar; 131(3):227-43. PubMed ID: 18270171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional modification of a Ca2+-activated K+ channel by trimethyloxonium.
    MacKinnon R; Miller C
    Biochemistry; 1989 Oct; 28(20):8087-92. PubMed ID: 2481495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Na(+) flow on Cd(2+) block of tetrodotoxin-resistant Na(+) channels.
    Kuo CC; Lin TJ; Hsieh CP
    J Gen Physiol; 2002 Aug; 120(2):159-72. PubMed ID: 12149278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular pore structure of voltage-gated sodium and calcium channels.
    Heinemann SH; Schlief T; Mori Y; Imoto K
    Braz J Med Biol Res; 1994 Dec; 27(12):2781-802. PubMed ID: 7550000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton block of rat brain sodium channels. Evidence for two proton binding sites and multiple occupancy.
    Daumas P; Andersen OS
    J Gen Physiol; 1993 Jan; 101(1):27-43. PubMed ID: 8382258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block of N-type calcium channels in chick sensory neurons by external sodium.
    Polo-Parada L; Korn SJ
    J Gen Physiol; 1997 Jun; 109(6):693-702. PubMed ID: 9222896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification reduces the conductance of sodium channels in nerve.
    Sigworth FJ; Spalding BC
    Nature; 1980 Jan; 283(5744):293-5. PubMed ID: 6965422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.