BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 8037860)

  • 21. Substance P decreases extracellular concentrations of acetylcholine in neostriatum and nucleus accumbens in vivo: possible relevance for the central processing of reward and aversion.
    Boix F; Pfister M; Huston JP; Schwarting RK
    Behav Brain Res; 1994 Aug; 63(2):213-9. PubMed ID: 7528024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement.
    Cahill L; McGaugh JL
    Behav Neurosci; 1990 Aug; 104(4):532-43. PubMed ID: 2206424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phasic Dopamine Signals in the Nucleus Accumbens that Cause Active Avoidance Require Endocannabinoid Mobilization in the Midbrain.
    Wenzel JM; Oleson EB; Gove WN; Cole AB; Gyawali U; Dantrassy HM; Bluett RJ; Dryanovski DI; Stuber GD; Deisseroth K; Mathur BN; Patel S; Lupica CR; Cheer JF
    Curr Biol; 2018 May; 28(9):1392-1404.e5. PubMed ID: 29681476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine in disturbances of food and drug motivated behavior: a case of homology?
    Di Chiara G
    Physiol Behav; 2005 Sep; 86(1-2):9-10. PubMed ID: 16129462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors.
    Pratt WE; Kelley AE
    Behav Neurosci; 2004 Aug; 118(4):730-9. PubMed ID: 15301600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies.
    Mistlberger RE; Mumby DG
    Behav Brain Res; 1992 Apr; 47(2):159-68. PubMed ID: 1590946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding.
    Beninger RJ; Ranaldi R
    Behav Brain Res; 1993 Jun; 55(2):203-12. PubMed ID: 8395180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats.
    de Borchgrave R; Rawlins JN; Dickinson A; Balleine BW
    Exp Brain Res; 2002 May; 144(1):50-68. PubMed ID: 11976759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential involvement of the central amygdala in appetitive versus aversive learning.
    Knapska E; Walasek G; Nikolaev E; Neuhäusser-Wespy F; Lipp HP; Kaczmarek L; Werka T
    Learn Mem; 2006; 13(2):192-200. PubMed ID: 16547163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception.
    Jeanblanc J; Hoeltzel A; Louilot A
    Neuroscience; 2002; 111(2):315-23. PubMed ID: 11983317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning.
    Kelley AE
    Neurosci Biobehav Rev; 2004 Jan; 27(8):765-76. PubMed ID: 15019426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive.
    Lemos JC; Wanat MJ; Smith JS; Reyes BA; Hollon NG; Van Bockstaele EJ; Chavkin C; Phillips PE
    Nature; 2012 Oct; 490(7420):402-6. PubMed ID: 22992525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrolytic lesions to nucleus accumbens core and shell have dissociable effects on conditioning to discrete and contextual cues in aversive and appetitive procedures respectively.
    Cassaday HJ; Horsley RR; Norman C
    Behav Brain Res; 2005 May; 160(2):222-35. PubMed ID: 15863219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond.
    Salamone JD; Correa M; Nunes EJ; Randall PA; Pardo M
    J Exp Anal Behav; 2012 Jan; 97(1):125-46. PubMed ID: 22287808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes.
    Salamone JD
    Psychopharmacology (Berl); 1992; 107(2-3):160-74. PubMed ID: 1615120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dopamine output in the nucleus accumbens shell is related to the acquisition and the retention of a motivated appetitive behavior in rats.
    Masi F; Scheggi S; Mangiavacchi S; Tolu P; Tagliamonte A; De Montis MG; Gambarana C
    Brain Res; 2001 Jun; 903(1-2):102-9. PubMed ID: 11382393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity.
    Kiyatkin EA
    Behav Brain Res; 2002 Dec; 137(1-2):27-46. PubMed ID: 12445714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance.
    McCullough LD; Sokolowski JD; Salamone JD
    Neuroscience; 1993 Feb; 52(4):919-25. PubMed ID: 8450978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dopamine/adenosine interactions involved in effort-related aspects of food motivation.
    Salamone JD; Correa M
    Appetite; 2009 Dec; 53(3):422-5. PubMed ID: 19635514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.