These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 8037860)

  • 41. Dopaminergic modulation of appetitive and aversive predictive learning.
    Iordanova MD
    Rev Neurosci; 2009; 20(5-6):383-404. PubMed ID: 20397621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine.
    Salamone JD; Correa M; Mingote SM; Weber SM
    Curr Opin Pharmacol; 2005 Feb; 5(1):34-41. PubMed ID: 15661623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced conditioned approach responses in transgenic mice with impaired glucocorticoid receptor function.
    Steckler T; Holsboer F
    Behav Brain Res; 1999 Jul; 102(1-2):151-63. PubMed ID: 10403023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Appetitive overshadowing is disrupted by systemic amphetamine but not by electrolytic lesions to the nucleus accumbens shell.
    Horsley RR; Moran PM; Cassaday HJ
    J Psychopharmacol; 2008 Mar; 22(2):172-81. PubMed ID: 18208926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions.
    Hamel L; Thangarasa T; Samadi O; Ito R
    eNeuro; 2017; 4(1):. PubMed ID: 28275709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.
    Ahmad T; Laviolette SR
    Psychopharmacology (Berl); 2017 Aug; 234(15):2325-2336. PubMed ID: 28669034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach.
    Piray P; Keramati MM; Dezfouli A; Lucas C; Mokri A
    Neural Comput; 2010 Sep; 22(9):2334-68. PubMed ID: 20569176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature.
    Wenzel JM; Rauscher NA; Cheer JF; Oleson EB
    ACS Chem Neurosci; 2015 Jan; 6(1):16-26. PubMed ID: 25491156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments.
    Bassareo V; Di Chiara G
    Neuroscience; 1999 Mar; 89(3):637-41. PubMed ID: 10199600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two types of motivation revealed by ibotenic acid nucleus accumbens lesions: dissociation of food carrying and hoarding and the role of primary and incentive motivation.
    Whishaw IQ; Kornelsen RA
    Behav Brain Res; 1993 Jun; 55(2):283-95. PubMed ID: 8357531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.
    Sellings LH; Baharnouri G; McQuade LE; Clarke PB
    Eur J Neurosci; 2008 Jul; 28(2):342-52. PubMed ID: 18702705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [How does the nucleus accumbens function?].
    Fernández-Espejo E
    Rev Neurol; 2000 May 1-15; 30(9):845-9. PubMed ID: 10870199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sardinian alcohol-preferring and non-preferring rats show different reactivity to aversive stimuli and a similar response to a natural reward.
    Leggio B; Masi F; Grappi S; Nanni G; Gambarana C; Colombo G; de Montis MG
    Brain Res; 2003 May; 973(2):275-84. PubMed ID: 12738071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception.
    Besson C; Louilot A
    Neuroscience; 1995 Oct; 68(4):963-8. PubMed ID: 8545002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.
    Bergado Acosta JR; Kahl E; Kogias G; Uzuneser TC; Fendt M
    Neuropharmacology; 2017 Mar; 114():58-66. PubMed ID: 27894877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption.
    Miranda MI; Rangel-Hernández JA; Vera-Rivera G; García-Medina NE; Soto-Alonso G; Rodríguez-García G; Núñez-Jaramillo L
    Neuroscience; 2017 Sep; 359():142-150. PubMed ID: 28716589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward.
    Feenstra MG
    Prog Brain Res; 2000; 126():133-63. PubMed ID: 11105645
    [No Abstract]   [Full Text] [Related]  

  • 58. Neurobiological constraints on behavioral models of motivation.
    Nader K; Bechara A; van der Kooy D
    Annu Rev Psychol; 1997; 48():85-114. PubMed ID: 9046556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli.
    Fiorillo CD; Song MR; Yun SR
    J Neurosci; 2013 Mar; 33(11):4710-25. PubMed ID: 23486944
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct roles of the different ionotropic glutamate receptors within the nucleus accumbens in passive-avoidance learning and memory in mice.
    De Leonibus E; Costantini VJ; Castellano C; Ferretti V; Oliverio A; Mele A
    Eur J Neurosci; 2003 Oct; 18(8):2365-73. PubMed ID: 14622199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.