BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8038121)

  • 1. Does early enucleation affect the decussation pattern of alpha cells in the ferret?
    Reese BE; Urich JL
    Vis Neurosci; 1994; 11(3):447-54. PubMed ID: 8038121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of the retinal line of decussation in normal and albino ferrets.
    Cucchiaro JB
    J Comp Neurol; 1991 Oct; 312(2):193-206. PubMed ID: 1748727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of monocular enucleation on ganglion cell number and terminal distribution in the ferret's retinal pathway.
    Thompson ID; Morgan JE; Henderson Z
    Eur J Neurosci; 1993 Apr; 5(4):357-67. PubMed ID: 8261115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of retinal ganglion cell decussation patterns in postnatal pigmented and albino ferrets.
    Thompson ID; Morgan JE
    Eur J Neurosci; 1993 Apr; 5(4):341-56. PubMed ID: 7505166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal decussation patterns in pigmented and albino ferrets.
    Morgan JE; Henderson Z; Thompson ID
    Neuroscience; 1987 Feb; 20(2):519-35. PubMed ID: 3587608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes produced in the retinofugal pathways of rats and ferrets by early monocular enucleations: the effects of age and the differences between normal and albino animals.
    Chan SO; Guillery RW
    J Neurosci; 1993 Dec; 13(12):5277-93. PubMed ID: 8254374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal changes in the uncrossed retinal projection of pigmented and albino Syrian hamsters and the effects of monocular enucleation.
    Thompson ID; Cordery P; Holt CE
    J Comp Neurol; 1995 Jun; 357(2):181-203. PubMed ID: 7545188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of early prenatal monocular enucleation on the routing of uncrossed retinofugal axons and the cellular environment at the chiasm of mouse embryos.
    Chan SO; Chung KY; Taylor JS
    Eur J Neurosci; 1999 Sep; 11(9):3225-35. PubMed ID: 10510186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell death and interocular interactions among retinofugal axons: lack of binocularly matched specificity.
    Serfaty CA; Reese BE; Linden R
    Brain Res Dev Brain Res; 1990 Nov; 56(2):198-204. PubMed ID: 1702041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a very early monocular enucleation upon the development of the uncrossed retinofugal pathway in ferrets.
    Taylor JS; Guillery RW
    J Comp Neurol; 1995 Jun; 357(2):331-40. PubMed ID: 7665732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Albino gene dosage and retinal decussation patterns in the pigmented ferret.
    Thompson ID; Jeffery G; Morgan JE; Baker G
    Vis Neurosci; 1991 Apr; 6(4):393-8. PubMed ID: 2059573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of retinogeniculate cells in the tammar wallaby in relation to decussation at the optic chiasm.
    Wimborne BM; Mark RF; Ibbotson MR
    J Comp Neurol; 1999 Mar; 405(1):128-40. PubMed ID: 10022200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse.
    Godement P; Salaün J; Métin C
    J Comp Neurol; 1987 Jan; 255(1):97-109. PubMed ID: 3819012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey.
    Chalupa LM; Lia B
    J Neurosci; 1991 Jan; 11(1):191-202. PubMed ID: 1702463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibre organization of the monkey's optic tract: II. Noncongruent representation of the two half-retinae.
    Reese BE; Cowey A
    J Comp Neurol; 1990 May; 295(3):401-12. PubMed ID: 2351759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal Ganglion Cell Axon Wiring Establishing the Binocular Circuit.
    Mason C; Slavi N
    Annu Rev Vis Sci; 2020 Sep; 6():215-236. PubMed ID: 32396770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiasmatic specificity in the regenerating mammalian optic nerve.
    MacLaren RE; Taylor JS
    Exp Neurol; 1997 Oct; 147(2):279-86. PubMed ID: 9344553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic competition in the developing retina: ganglion cell density gradients and laterally displaced dendrites.
    Linden R
    Vis Neurosci; 1993; 10(2):313-24. PubMed ID: 8485094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severity of ganglion cell death during early postnatal development is modulated by both neuronal activity and binocular competition.
    Scheetz AJ; Williams RW; Dubin MW
    Vis Neurosci; 1995; 12(4):605-10. PubMed ID: 8527362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.