These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 8038126)
1. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Sieving PA; Murayama K; Naarendorp F Vis Neurosci; 1994; 11(3):519-32. PubMed ID: 8038126 [TBL] [Abstract][Full Text] [Related]
2. A proximal retinal component in the primate photopic ERG a-wave. Bush RA; Sieving PA Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014 [TBL] [Abstract][Full Text] [Related]
3. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. Rangaswamy NV; Hood DC; Frishman LJ Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276 [TBL] [Abstract][Full Text] [Related]
4. Luminance dependence of neural components that underlies the primate photopic electroretinogram. Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327 [TBL] [Abstract][Full Text] [Related]
5. Inner retinal contributions to the primate photopic fast flicker electroretinogram. Bush RA; Sieving PA J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):557-65. PubMed ID: 8627412 [TBL] [Abstract][Full Text] [Related]
6. Retinal pathway origins of the pattern ERG of the mouse. Miura G; Wang MH; Ivers KM; Frishman LJ Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the rod photoresponse isolated from the dark-adapted primate ERG. Jamison JA; Bush RA; Lei B; Sieving PA Vis Neurosci; 2001; 18(3):445-55. PubMed ID: 11497421 [TBL] [Abstract][Full Text] [Related]
9. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina. Kang Derwent JJ; Linsenmeier RA Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412 [TBL] [Abstract][Full Text] [Related]
10. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs. Kondo M; Sieving PA Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883 [TBL] [Abstract][Full Text] [Related]
11. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli. Kondo M; Sieving PA Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456 [TBL] [Abstract][Full Text] [Related]
12. Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo. Lei B; Bush RA; Milam AH; Sieving PA Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):262-6. PubMed ID: 10634629 [TBL] [Abstract][Full Text] [Related]
13. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG. Rangaswamy NV; Shirato S; Kaneko M; Digby BI; Robson JG; Frishman LJ Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4818-28. PubMed ID: 17898309 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of ON-bipolar cell responses of cone electroretinograms in rabbits with the Pro347Leu rhodopsin mutation. Nishimura T; Machida S; Kondo M; Terasaki H; Yokoyama D; Kurosaka D Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7610-7. PubMed ID: 21873670 [TBL] [Abstract][Full Text] [Related]
16. The ERG of guinea pig (Cavis porcellus): comparison with I-type monkey and E-type rat. Lei B Doc Ophthalmol; 2003 May; 106(3):243-9. PubMed ID: 12737501 [TBL] [Abstract][Full Text] [Related]
17. The d-wave of the rod electroretinogram of rat originates in the cone pathway. Naarendorp F; Williams GE Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481 [TBL] [Abstract][Full Text] [Related]
18. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095 [TBL] [Abstract][Full Text] [Related]
19. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness. Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616 [TBL] [Abstract][Full Text] [Related]
20. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Mojumder DK; Sherry DM; Frishman LJ J Physiol; 2008 May; 586(10):2551-80. PubMed ID: 18388140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]