These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 8038132)
1. Receptor demise from alteration of glycosylation site in Drosophila opsin: electrophysiology, microspectrophotometry, and electron microscopy. Brown G; Chen DM; Christianson JS; Lee R; Stark WS Vis Neurosci; 1994; 11(3):619-28. PubMed ID: 8038132 [TBL] [Abstract][Full Text] [Related]
2. The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure. Ahmad ST; Natochin M; Artemyev NO; O'Tousa JE FASEB J; 2007 Feb; 21(2):449-55. PubMed ID: 17158966 [TBL] [Abstract][Full Text] [Related]
3. Requirement of N-linked glycosylation site in Drosophila rhodopsin. O'Tousa JE Vis Neurosci; 1992 May; 8(5):385-90. PubMed ID: 1534022 [TBL] [Abstract][Full Text] [Related]
4. Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. Larrivee DC; Conrad SK; Stephenson RS; Pak WL J Gen Physiol; 1981 Nov; 78(5):521-45. PubMed ID: 6796648 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state. Bentrop J; Schwab K; Pak WL; Paulsen R EMBO J; 1997 Apr; 16(7):1600-9. PubMed ID: 9130705 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the primary photointermediates of Drosophila rhodopsin. Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361 [TBL] [Abstract][Full Text] [Related]
7. Control of Drosophila opsin gene expression by carotenoids and retinoic acid: northern and western analyses. Picking WL; Chen DM; Lee RD; Vogt ME; Polizzi JL; Marietta RG; Stark WS Exp Eye Res; 1996 Nov; 63(5):493-500. PubMed ID: 8994352 [TBL] [Abstract][Full Text] [Related]
8. Carotenoid replacement in Drosophila: freeze-fracture electron microscopy. Stark WS; White RH J Neurocytol; 1996 Apr; 25(4):233-41. PubMed ID: 8793729 [TBL] [Abstract][Full Text] [Related]
9. Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density. Schinz RH; Lo MV; Larrivee DC; Pak WL J Cell Biol; 1982 Jun; 93(3):961-7. PubMed ID: 6811602 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructure of the retina of Drosophila melanogaster: the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). Stark WS; Sapp R J Neurogenet; 1987 Aug; 4(5):227-40. PubMed ID: 3117994 [TBL] [Abstract][Full Text] [Related]
11. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Kumar JP; Ready DF Development; 1995 Dec; 121(12):4359-70. PubMed ID: 8575336 [TBL] [Abstract][Full Text] [Related]
12. Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization. Iakhine R; Chorna-Ornan I; Zars T; Elia N; Cheng Y; Selinger Z; Minke B; Hyde DR J Neurosci; 2004 Mar; 24(10):2516-26. PubMed ID: 15014127 [TBL] [Abstract][Full Text] [Related]
13. Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. O'Tousa JE; Leonard DS; Pak WL J Neurogenet; 1989 Sep; 6(1):41-52. PubMed ID: 2528612 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells. Ahmad ST; Natochin M; Barren B; Artemyev NO; O'Tousa JE Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3722-8. PubMed ID: 16936079 [TBL] [Abstract][Full Text] [Related]
15. Carotenoid replacement therapy in Drosophila: recovery of membrane, opsin and visual pigment. Sapp RJ; Christianson JS; Maier L; Studer K; Stark WS Exp Eye Res; 1991 Jul; 53(1):73-9. PubMed ID: 1831766 [TBL] [Abstract][Full Text] [Related]
16. Microphotometric, ultrastructural, and electrophysiological analyses of light-dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila. Zinkl GM; Maier L; Studer K; Sapp R; Chen DM; Stark WS Vis Neurosci; 1990 Nov; 5(5):429-39. PubMed ID: 2126952 [TBL] [Abstract][Full Text] [Related]
17. Visual receptor cycle in normal and period mutant Drosophila: microspectrophotometry, electrophysiology, and ultrastructural morphometry. Chen DM; Christianson JS; Sapp RJ; Stark WS Vis Neurosci; 1992 Aug; 9(2):125-35. PubMed ID: 1504021 [TBL] [Abstract][Full Text] [Related]
18. Microscopy of multiple visual receptor types in Drosophila. Stark WS; Thomas CF Mol Vis; 2004 Dec; 10():943-55. PubMed ID: 15616481 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Conserved Glutamate and Aspartate Residues in Drosophila Rhodopsin 1 and Their Influence on Spectral Tuning. Zheng L; Farrell DM; Fulton RM; Bagg EE; Salcedo E; Manino M; Britt SG J Biol Chem; 2015 Sep; 290(36):21951-61. PubMed ID: 26195627 [TBL] [Abstract][Full Text] [Related]
20. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal. Ozaki K; Nagatani H; Ozaki M; Tokunaga F Neuron; 1993 Jun; 10(6):1113-9. PubMed ID: 8318232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]