These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 8038132)
21. Extraretinal photoreceptors at the compound eye's posterior margin in Drosophila melanogaster. Yasuyama K; Meinertzhagen IA J Comp Neurol; 1999 Sep; 412(2):193-202. PubMed ID: 10441750 [TBL] [Abstract][Full Text] [Related]
22. Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84 of Drosophila. Stark WS; Carlson SD Cell Tissue Res; 1983; 233(2):305-17. PubMed ID: 6413070 [TBL] [Abstract][Full Text] [Related]
23. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. Pak WL; Shino S; Leung HT J Neurogenet; 2012 Jun; 26(2):216-37. PubMed ID: 22283778 [TBL] [Abstract][Full Text] [Related]
24. Opsin maturation and targeting to rhabdomeral photoreceptor membranes requires the retinal chromophore. Huber A; Wolfrum U; Paulsen R Eur J Cell Biol; 1994 Apr; 63(2):219-29. PubMed ID: 8082646 [TBL] [Abstract][Full Text] [Related]
25. Turnover of membrane and opsin in visual receptors of normal and mutant Drosophila. Sapp RJ; Christianson J; Stark WS J Neurocytol; 1991 Jul; 20(7):597-608. PubMed ID: 1833511 [TBL] [Abstract][Full Text] [Related]
26. Functions of neuronal Synaptobrevin in the post-Golgi transport of Rhodopsin in Drosophila photoreceptors. Yamashita H; Ochi Y; Yamada Y; Sasaki S; Tago T; Satoh T; Satoh AK J Cell Sci; 2022 Dec; 135(24):. PubMed ID: 36444566 [TBL] [Abstract][Full Text] [Related]
27. Photoreceptor morphogenesis in the Drosophila compound eye: R1-R6 rhabdomeres become twisted just before eclosion. Baumann O; Lutz K J Comp Neurol; 2006 Sep; 498(1):68-79. PubMed ID: 16856177 [TBL] [Abstract][Full Text] [Related]
28. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. Webel R; Menon I; O'Tousa JE; Colley NJ J Biol Chem; 2000 Aug; 275(32):24752-9. PubMed ID: 10811808 [TBL] [Abstract][Full Text] [Related]
29. A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster. Montell C; Jones K; Zuker C; Rubin G J Neurosci; 1987 May; 7(5):1558-66. PubMed ID: 2952772 [TBL] [Abstract][Full Text] [Related]
30. Drosophila in vision research. The Friedenwald Lecture. Pak WL Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2340-57. PubMed ID: 7591624 [TBL] [Abstract][Full Text] [Related]
31. Function of rhodopsin in temperature discrimination in Drosophila. Shen WL; Kwon Y; Adegbola AA; Luo J; Chess A; Montell C Science; 2011 Mar; 331(6022):1333-6. PubMed ID: 21393546 [TBL] [Abstract][Full Text] [Related]
32. Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. Rohrer B; Goletz P; Znoiko S; Ablonczy Z; Ma JX; Redmond TM; Crouch RK Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):310-5. PubMed ID: 12506090 [TBL] [Abstract][Full Text] [Related]
33. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Lem J; Krasnoperova NV; Calvert PD; Kosaras B; Cameron DA; Nicolò M; Makino CL; Sidman RL Proc Natl Acad Sci U S A; 1999 Jan; 96(2):736-41. PubMed ID: 9892703 [TBL] [Abstract][Full Text] [Related]
34. Ectopic expression of a minor Drosophila opsin in the major photoreceptor cell class: distinguishing the role of primary receptor and cellular context. Zuker CS; Mismer D; Hardy R; Rubin GM Cell; 1988 May; 53(3):475-82. PubMed ID: 2966681 [TBL] [Abstract][Full Text] [Related]
35. Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment. Katz ML; Chen DM; Stientjes HJ; Stark WS Exp Eye Res; 1993 Jun; 56(6):671-82. PubMed ID: 8595809 [TBL] [Abstract][Full Text] [Related]
36. Drosophila locus with gene-dosage effects on rhodopsin. Scavarda NJ; O'tousa J; Pak WL Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4441-5. PubMed ID: 16593338 [TBL] [Abstract][Full Text] [Related]
37. Retinal abnormalities associated with the G90D mutation in opsin. Naash MI; Wu TH; Chakraborty D; Fliesler SJ; Ding XQ; Nour M; Peachey NS; Lem J; Qtaishat N; Al-Ubaidi MR; Ripps H J Comp Neurol; 2004 Oct; 478(2):149-63. PubMed ID: 15349976 [TBL] [Abstract][Full Text] [Related]
38. Phylogeny and physiology of Drosophila opsins. Carulli JP; Chen DM; Stark WS; Hartl DL J Mol Evol; 1994 Mar; 38(3):250-62. PubMed ID: 8006992 [TBL] [Abstract][Full Text] [Related]
39. Drosophila Rhodopsin 7 can partially replace the structural role of Rhodopsin 1, but not its physiological function. Grebler R; Kistenpfennig C; Rieger D; Bentrop J; Schneuwly S; Senthilan PR; Helfrich-Förster C J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Aug; 203(8):649-659. PubMed ID: 28500442 [TBL] [Abstract][Full Text] [Related]
40. South American Weakly Electric Fish (Gymnotiformes) Are Long-Wavelength-Sensitive Cone Monochromats. Liu DW; Lu Y; Yan HY; Zakon HH Brain Behav Evol; 2016; 88(3-4):204-212. PubMed ID: 27820927 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]