These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8038268)
21. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes. Féray JC; Garay R J Biol Chem; 1987 Apr; 262(12):5763-8. PubMed ID: 3571233 [TBL] [Abstract][Full Text] [Related]
22. Induction of Mn2+/H+ antiport in chicken erythrocytes by intracellular Mg2+ and Mn2+. Günther T; Vormann J FEBS Lett; 1990 Jun; 265(1-2):55-8. PubMed ID: 2365055 [TBL] [Abstract][Full Text] [Related]
23. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation. Vormann J; Günther T; Perras B; Rob PM Eur J Clin Chem Clin Biochem; 1994 Dec; 32(12):901-4. PubMed ID: 7696437 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of magnesium fluxes in rat erythrocytes using a stable isotope of magnesium. Chanson A; Feillet-Coudray C; Gueux E; Coudray C; Rambeau M; Mazur A; Wolf FI; Rayssiguier Y Front Biosci; 2005 May; 10():1720-6. PubMed ID: 15769661 [TBL] [Abstract][Full Text] [Related]
26. Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes. Miseta A; Bogner P; Berényi E; Kellermayer M; Galambos C; Wheatley DN; Cameron IL Biochim Biophys Acta; 1993 Jan; 1175(2):133-9. PubMed ID: 8418892 [TBL] [Abstract][Full Text] [Related]
27. Effect of external magnesium on intracellular free sodium: Na+ flux via Na+/Mg2+ antiport is masked by other Na+ transport systems in rat cardiac myocytes. Odblom MP; Handy RD Magnes Res; 2001 Mar; 14(1-2):3-9. PubMed ID: 11300619 [TBL] [Abstract][Full Text] [Related]
28. Further studies on alterations in magnesium binding during cold storage of erythrocytes. Bock JL; Yusuf Y Biochim Biophys Acta; 1988 Jun; 941(2):225-31. PubMed ID: 3132976 [TBL] [Abstract][Full Text] [Related]
29. Na(+)-dependent Mg2+ efflux from Mg(2+)-loaded rat thymocytes and HL 60 cells. Günther T; Vormann J Magnes Trace Elem; 1990; 9(5):279-82. PubMed ID: 2130826 [TBL] [Abstract][Full Text] [Related]
30. Iron transport into erythroid cells by the Na+/Mg2+ antiport. Stonell LM; Savigni DL; Morgan EH Biochim Biophys Acta; 1996 Jun; 1282(1):163-70. PubMed ID: 8679654 [TBL] [Abstract][Full Text] [Related]
31. Mineral metabolism in erythrocytes from patients with cystic fibrosis. Vormann J; Günther T; Magdorf K; Wahn U Eur J Clin Chem Clin Biochem; 1992 Apr; 30(4):193-6. PubMed ID: 1525247 [TBL] [Abstract][Full Text] [Related]
32. Elevating intracellular free Mg2+ preserves sensitivity of Na(+)-K+ pump to ATP at reduced temperatures in guinea pig red blood cells. Marjanovic M; Willis JS J Comp Physiol B; 1995; 165(6):428-32. PubMed ID: 8576455 [TBL] [Abstract][Full Text] [Related]
33. Characterization of Mg(2+) efflux from rat erythrocytes non-loaded with Mg(2+). Ebel H; Günther T Biochim Biophys Acta; 1999 Oct; 1421(2):353-60. PubMed ID: 10518705 [TBL] [Abstract][Full Text] [Related]
34. Regulation by extracellular Na+ of cytosolic Mg2+ concentration in Mg(2+)-loaded rat sublingual acini. Zhang GH; Melvin JE FEBS Lett; 1995 Aug; 371(1):52-6. PubMed ID: 7664884 [TBL] [Abstract][Full Text] [Related]
35. Magnesium transport in ferret red cells. Flatman PW; Smith LM J Physiol; 1990 Dec; 431():11-25. PubMed ID: 2100303 [TBL] [Abstract][Full Text] [Related]
36. [The property of tetracyclines to induce methemoglobin formation in erythrocytes and to inactivate catalase when exposed to radiation in the visible range]. Petrenko IuM; Titov VIu; Vladimirov IuA Antibiot Khimioter; 1995 Jun; 40(6):10-8. PubMed ID: 8593088 [TBL] [Abstract][Full Text] [Related]
37. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions. Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597 [TBL] [Abstract][Full Text] [Related]
38. Buffering and activity coefficient of intracellular free magnesium concentration in human erythrocytes. Günther T; Vormann J; McGuigan JA Biochem Mol Biol Int; 1995 Nov; 37(5):871-5. PubMed ID: 8624492 [TBL] [Abstract][Full Text] [Related]
39. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats. Bin Talib HK; Zicha J Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151 [TBL] [Abstract][Full Text] [Related]
40. An Na+-stimulated Mg2+-transport system in human red blood cells. Féray JC; Garay R Biochim Biophys Acta; 1986 Mar; 856(1):76-84. PubMed ID: 3955035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]