BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8039259)

  • 1. Availability for enzyme-catalyzed oxidation of cholesterol in mixed monolayers containing both phosphatidylcholine and sphingomyelin.
    Mattjus P; Slotte JP
    Chem Phys Lipids; 1994 May; 71(1):73-81. PubMed ID: 8039259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids?
    Mattjus P; Slotte JP
    Chem Phys Lipids; 1996 Jun; 81(1):69-80. PubMed ID: 9450320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear.
    Slotte JP
    Biochemistry; 1992 Jun; 31(24):5472-7. PubMed ID: 1610794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol oxidase susceptibility of cholesterol and 5-androsten-3 beta-ol in pure sterol monolayers and in mixed monolayers containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Slotte JP
    Biochim Biophys Acta; 1992 Feb; 1124(1):23-8. PubMed ID: 1543722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity.
    Grönberg L; Slotte JP
    Biochemistry; 1990 Apr; 29(13):3173-8. PubMed ID: 2334687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles.
    Slotte JP; Jungner M; Vilchèze C; Bittman R
    Biochim Biophys Acta; 1994 Mar; 1190(2):435-43. PubMed ID: 8142447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation/isomerization of 5-cholesten-3 beta-ol and 5-cholesten-3-one to 4-cholesten-3-one in pure sterol and mixed phospholipid-containing monolayers by cholesterol oxidase.
    Slotte JP; Ostman AL
    Biochim Biophys Acta; 1993 Feb; 1145(2):243-9. PubMed ID: 8431456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-catalyzed oxidation of cholesterol in pure monolayers at the air/water interface.
    Slotte JP
    Biochim Biophys Acta; 1992 Feb; 1123(3):326-33. PubMed ID: 1536872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers.
    Grönberg L; Ruan ZS; Bittman R; Slotte JP
    Biochemistry; 1991 Nov; 30(44):10746-54. PubMed ID: 1931994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of cholesterol with sphingomyelin in monolayers and vesicles.
    Bittman R; Kasireddy CR; Mattjus P; Slotte JP
    Biochemistry; 1994 Oct; 33(39):11776-81. PubMed ID: 7918394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingomyelin/phosphatidylcholine/cholesterol monolayers--analysis of the interactions in model membranes and Brewster Angle Microscopy experiments.
    Wydro P
    Colloids Surf B Biointerfaces; 2012 May; 93():174-9. PubMed ID: 22277747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of cholesterol in low density and high density lipoproteins by cholesterol oxidase.
    Slotte JP; Grönberg L
    J Lipid Res; 1990 Dec; 31(12):2235-42. PubMed ID: 2090717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments.
    Wydro P; Flasiński M; Broniatowski M
    J Colloid Interface Sci; 2013 May; 397():122-30. PubMed ID: 23465189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines.
    Parkkila P; Stefl M; Olżyńska A; Hof M; Kinnunen PK
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):167-73. PubMed ID: 25450344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the action of cholesterol oxidase in monolayers.
    Slotte JP
    Biochim Biophys Acta; 1995 Nov; 1259(2):180-6. PubMed ID: 7488639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface--a comparative study with two different reporter molecules.
    Slotte JP; Mattjus P
    Biochim Biophys Acta; 1995 Jan; 1254(1):22-9. PubMed ID: 7811742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation.
    Smaby JM; Brockman HL; Brown RE
    Biochemistry; 1994 Aug; 33(31):9135-42. PubMed ID: 8049216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between phosphatidylcholines and cholesterol in monolayers at the air/water interface.
    Dynarowicz-Łatka P; Hac-Wydro K
    Colloids Surf B Biointerfaces; 2004 Aug; 37(1-2):21-5. PubMed ID: 15450304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins.
    Ramstedt B; Slotte JP
    Biophys J; 1999 Sep; 77(3):1498-506. PubMed ID: 10465760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.