BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 803945)

  • 21. Evidence for a tetranuclear iron-sulfur center in glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis.
    Averill BA; Dwivedi A; Debrunner P; Vollmer SJ; Wong JY; Switzer RL
    J Biol Chem; 1980 Jul; 255(13):6007-10. PubMed ID: 6771260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of synthesis of glutamine synthase in Bacillus subtilis.
    Rebello JL; Strauss N
    J Bacteriol; 1969 May; 98(2):683-8. PubMed ID: 4977484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli.
    Bussey LB; Switzer RL
    J Bacteriol; 1993 Oct; 175(19):6348-53. PubMed ID: 8407808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme.
    Makaroff CA; Zalkin H; Switzer RL; Vollmer SJ
    J Biol Chem; 1983 Sep; 258(17):10586-93. PubMed ID: 6411717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamine amidotransferase function. Replacement of the active-site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis.
    Mäntsälä P; Zalkin H
    J Biol Chem; 1984 Nov; 259(22):14230-6. PubMed ID: 6094545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of glutamine: 5-phosphoribosyl 1-pyrophosphate amidotransferase in Bacillus subtilis: oxidation of an essential Fe-S centre precedes selective degradation.
    Switzer RL; Ruppen ME; Bernlohr DA
    Biochem Soc Trans; 1982 Oct; 10(5):322-4. PubMed ID: 6814966
    [No Abstract]   [Full Text] [Related]  

  • 28. Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase.
    Mäntsälä P; Zalkin H
    J Biol Chem; 1984 Jul; 259(13):8478-84. PubMed ID: 6376509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.
    Reeve CA; Baldwin TO
    J Bacteriol; 1981 Jun; 146(3):1038-45. PubMed ID: 7240082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A possible role for oxygen inactivation in the regulation of amidophosphoribosyltransferase activity in mammalian cells.
    Leff RL; Itakura M; Udom A; Holmes EW
    Adv Enzyme Regul; 1984; 22():403-11. PubMed ID: 6382955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of extracellular protease formation by Bacillus subtilis and its control by amino acid repression.
    May BK; Elliott WH
    Biochim Biophys Acta; 1968 May; 157(3):607-15. PubMed ID: 4969865
    [No Abstract]   [Full Text] [Related]  

  • 32. Immunochemical studies of the inactivation of aspartate transcarbamylase by stationary phase Bacillus subtilis cells. Evidence for selective, energy-dependent degradation.
    Maurizi MR; Brabson JS; Switzer RL
    J Biol Chem; 1978 Aug; 253(16):5585-93. PubMed ID: 97299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic characterization of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase.
    Oñate YA; Vollmer SJ; Switzer RL; Johnson MK
    J Biol Chem; 1989 Nov; 264(31):18386-91. PubMed ID: 2553706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal death of temperature-sensitive lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis: effect of culture medium and developmental stage.
    Steinberg W
    J Bacteriol; 1974 Nov; 120(2):767-78. PubMed ID: 4218233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase.
    Bylund JE; Haines MA; Piggot PJ; Higgins ML
    J Bacteriol; 1993 Apr; 175(7):1886-90. PubMed ID: 7681431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression.
    Fisher SH; Sonenshein AL
    J Bacteriol; 1984 Feb; 157(2):612-21. PubMed ID: 6141156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a rifampin-resistant, conditional asporogenous mutant of Bacillus subtilis.
    Murray CD; Pun PP; Strauss N
    J Bacteriol; 1975 Jul; 123(1):346-53. PubMed ID: 806577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis.
    Gómez-Marroquín M; Vidales LE; Debora BN; Santos-Escobar F; Obregón-Herrera A; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2015 Jun; 197(11):1963-71. PubMed ID: 25825434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repression of sporulation in Bacillus subtilis by L-malate.
    Ohné M; Rutberg B
    J Bacteriol; 1976 Feb; 125(2):453-60. PubMed ID: 812866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.