These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 803945)

  • 61. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli.
    Muchmore CR; Krahn JM; Kim JH; Zalkin H; Smith JL
    Protein Sci; 1998 Jan; 7(1):39-51. PubMed ID: 9514258
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of purine ribonucleotide synthesis by end product inhibition. II. Effect of purine nucleotides on phosphoribosylpyrophosphate amidotransferase of Bacillus subtilis.
    Shiio I; Ishii K
    J Biochem; 1969 Aug; 66(2):175-81. PubMed ID: 4981457
    [No Abstract]   [Full Text] [Related]  

  • 63. Bacillus subtilis AprX involved in degradation of a heterologous protein during the late stationary growth phase.
    Kodama T; Endo K; Sawada K; Ara K; Ozaki K; Kakeshita H; Yamane K; Sekiguchi J
    J Biosci Bioeng; 2007 Aug; 104(2):135-43. PubMed ID: 17884659
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Anthranilate synthase from Bacillus subtilis. The role of a reduced subunit X in aggregate formation and amidotransferase activity.
    Holmes WM; Kane JF
    J Biol Chem; 1975 Jun; 250(12):4462-9. PubMed ID: 806587
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties.
    Sonenshein AL; Cami B; Brevet J; Cote R
    J Bacteriol; 1974 Oct; 120(1):253-65. PubMed ID: 4370705
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase.
    Leemhuis H; Wehmeier UF; Dijkhuizen L
    Biochemistry; 2004 Oct; 43(41):13204-13. PubMed ID: 15476414
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of sites for feedback regulation of glutamine 5-phosphoribosylpyrophosphate amidotransferase by nucleotides and relationship to residues important for catalysis.
    Zhou G; Charbonneau H; Colman RF; Zalkin H
    J Biol Chem; 1993 May; 268(14):10471-81. PubMed ID: 7683680
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rifampin resistance mutation of Bacillus subtilis altering the electrophoretic mobility of the beta subunit of ribonucleic acid polymerase.
    Linn T; Losick R; Sonenshein AL
    J Bacteriol; 1975 Jun; 122(3):1387-90. PubMed ID: 807557
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis.
    Strauch MA; Zalkin H; Aronson AI
    J Bacteriol; 1988 Feb; 170(2):916-20. PubMed ID: 2892827
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Characteristics of intracellular proteolysis in the cells of Bacillus subtilis].
    Belitskiĭ BR; Shakulov RS
    Biokhimiia; 1980 Oct; 45(10):1788-96. PubMed ID: 6786368
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation of two aspartokinases in Bacillus subtilis.
    Hampton ML; McCormick NG; Behforouz NC; Freese E
    J Bacteriol; 1971 Dec; 108(3):1129-34. PubMed ID: 5003173
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.
    Broman K; Lauwers N; Stalon V; Wiame JM
    J Bacteriol; 1978 Sep; 135(3):920-7. PubMed ID: 690081
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pleiotropic effect of a rifampin-resistant mutation in Bacillus subtilis.
    Ryu JI
    J Bacteriol; 1978 Aug; 135(2):408-14. PubMed ID: 98517
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Properties of 5-phosphoryl-1-pyrophosphate amidotransferase from the yeast Saccharomyces cerevisiae wild type and mutant with altered purine biosynthesis regulation].
    Smolina VS; Bekker ML
    Biokhimiia; 1982 Jan; 47(1):162-7. PubMed ID: 7039693
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Degradation of ornithine transcarbamylase in sporulating Bacillus subtilis cells.
    Neway JO; Switzer RL
    J Bacteriol; 1983 Aug; 155(2):522-30. PubMed ID: 6409881
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Extracellular proteases modify cell wall turnover in Bacillus subtilis.
    Jolliffe LK; Doyle RJ; Streips UN
    J Bacteriol; 1980 Mar; 141(3):1199-208. PubMed ID: 6102558
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sequential synthesis of histidine-degrading enzymes in Bacillus subtilis.
    Kaminskas E; Magasanik B
    J Biol Chem; 1970 Jul; 245(14):3549-55. PubMed ID: 4990472
    [No Abstract]   [Full Text] [Related]  

  • 78. Regulatory factors affecting alpha-amylase production in bacillus licheniformis.
    Saito N; Yamamoto K
    J Bacteriol; 1975 Mar; 121(3):848-56. PubMed ID: 163815
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport.
    Atkinson MR; Wray LV; Fisher SH
    J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides.
    Chen S; Tomchick DR; Wolle D; Hu P; Smith JL; Switzer RL; Zalkin H
    Biochemistry; 1997 Sep; 36(35):10718-26. PubMed ID: 9271502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.