These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8040083)

  • 1. A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1994 Apr; 74(1-2):122-34. PubMed ID: 8040083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1993 Jun; 68(1):97-106. PubMed ID: 8376219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latency of contralateral sound-evoked auditory efferent suppression of otoacoustic emissions.
    Hill JC; Prasher DK; Luxon LM
    Acta Otolaryngol; 1997 May; 117(3):343-51. PubMed ID: 9199519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-varying alterations in the f2-f1 DPOAE response to continuous primary stimulation. I: Response characterization and contribution of the olivocochlear efferents.
    Kujawa SG; Fallon M; Bobbin RP
    Hear Res; 1995 May; 85(1-2):142-54. PubMed ID: 7559170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel effect of cochlear efferents: in vivo response enhancement does not require alpha9 cholinergic receptors.
    Maison SF; Vetter DE; Liberman MC
    J Neurophysiol; 2007 May; 97(5):3269-78. PubMed ID: 17344378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on cochlear responses of activation of descending pathways from the inferior colliculus.
    Mulders WH; Robertson D
    Hear Res; 2000 Nov; 149(1-2):11-23. PubMed ID: 11033243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation.
    Vetter DE; Liberman MC; Mann J; Barhanin J; Boulter J; Brown MC; Saffiote-Kolman J; Heinemann SF; Elgoyhen AB
    Neuron; 1999 May; 23(1):93-103. PubMed ID: 10402196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.
    Erostegui C; Norris CH; Bobbin RP
    Hear Res; 1994 Apr; 74(1-2):135-47. PubMed ID: 8040084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
    Guinan JJ
    Ear Hear; 2006 Dec; 27(6):589-607. PubMed ID: 17086072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferior colliculus stimulation causes similar efferent effects on ipsilateral and contralateral cochlear potentials in the guinea pig.
    Zhang W; Dolan DF
    Brain Res; 2006 Apr; 1081(1):138-49. PubMed ID: 16500626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additional pharmacological evidence that endogenous ATP modulates cochlear mechanics.
    Chen C; Skellett RA; Fallon M; Bobbin RP
    Hear Res; 1998 Apr; 118(1-2):47-61. PubMed ID: 9606060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig.
    Sridhar TS; Liberman MC; Brown MC; Sewell WF
    J Neurosci; 1995 May; 15(5 Pt 1):3667-78. PubMed ID: 7751937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial olivocochlear efferent activity in awake guinea pigs.
    Guitton MJ; Avan P; Puel JL; Bonfils P
    Neuroreport; 2004 Jun; 15(9):1379-82. PubMed ID: 15194856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation].
    Nieschalk M; Beneking R; Stoll W
    HNO; 1997 May; 45(5):378-84. PubMed ID: 9265021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents?
    Larsen E; Liberman MC
    Hear Res; 2009 Oct; 256(1-2):1-10. PubMed ID: 19232534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1992 Aug; 61(1-2):106-16. PubMed ID: 1326504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.