These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8041124)

  • 41. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation.
    Kasimir MT; Weigel G; Sharma J; Rieder E; Seebacher G; Wolner E; Simon P
    Thromb Haemost; 2005 Sep; 94(3):562-7. PubMed ID: 16268473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers.
    Brand NJ; Roy A; Hoare G; Chester A; Yacoub MH
    Int J Biochem Cell Biol; 2006 Jan; 38(1):30-42. PubMed ID: 16154797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Repopulation of freeze-dried porcine valves with human fibroblasts and endothelial cells.
    Curtil A; Pegg DE; Wilson A
    J Heart Valve Dis; 1997 May; 6(3):296-306. PubMed ID: 9183730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induction of the myofibroblastic phenotype in human gingival fibroblasts by transforming growth factor-beta1: role of RhoA-ROCK and c-Jun N-terminal kinase signaling pathways.
    Smith PC; Cáceres M; Martinez J
    J Periodontal Res; 2006 Oct; 41(5):418-25. PubMed ID: 16953819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast.
    Vaughan MB; Howard EW; Tomasek JJ
    Exp Cell Res; 2000 May; 257(1):180-9. PubMed ID: 10854066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells.
    Filip DA; Radu A; Simionescu M
    Circ Res; 1986 Sep; 59(3):310-20. PubMed ID: 3769149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The myofibroblast. Recent advances (author's transl)].
    Mussini JM; Slabodsky-Brousse N; Henin D; Turpelin F
    Pathol Biol (Paris); 1977 Sep; 25(7):477-84. PubMed ID: 339161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells.
    Butcher JT; Nerem RM
    J Heart Valve Dis; 2004 May; 13(3):478-85; discussion 485-6. PubMed ID: 15222296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells.
    Merryman WD; Liao J; Parekh A; Candiello JE; Lin H; Sacks MS
    Tissue Eng; 2007 Sep; 13(9):2281-9. PubMed ID: 17596117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype.
    Thayer P; Balachandran K; Rathan S; Yap CH; Arjunon S; Jo H; Yoganathan AP
    Ann Biomed Eng; 2011 Jun; 39(6):1654-67. PubMed ID: 21347552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atrioventricular valves of the mouse: II. Light and transmission electron microscopy.
    Icardo JM; Colvee E
    Anat Rec; 1995 Mar; 241(3):391-400. PubMed ID: 7755179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell composition of the human pulmonary valve: a comparative study with the aortic valve--the VESALIO Project. Vitalitate Exornatum Succedaneum Aorticum labore Ingegnoso Obtinebitur.
    Della Rocca F; Sartore S; Guidolin D; Bertiplaglia B; Gerosa G; Casarotto D; Pauletto P
    Ann Thorac Surg; 2000 Nov; 70(5):1594-600. PubMed ID: 11093493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells.
    Moraes C; Likhitpanichkul M; Lam CJ; Beca BM; Sun Y; Simmons CA
    Integr Biol (Camb); 2013 Apr; 5(4):673-80. PubMed ID: 23403640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior.
    Khang A; Nguyen Q; Feng X; Howsmon DP; Sacks MS
    Acta Biomater; 2023 Jun; 163():194-209. PubMed ID: 35085795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Light and scanning electron microscopic studies of porcine semilunar aortic valves].
    Galloni M; Ceccarelli V
    Schweiz Arch Tierheilkd; 1979 Sep; 121(9):485-91. PubMed ID: 542841
    [No Abstract]   [Full Text] [Related]  

  • 56. Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics.
    Johnson CM; Hanson MN; Helgeson SC
    J Mol Cell Cardiol; 1987 Dec; 19(12):1185-93. PubMed ID: 3327949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intrinsic innervation of porcine semilunar heart valves.
    De Biasi S; Vitellaro-Zuccarello L
    Anat Embryol (Berl); 1982 Sep; 165(1):71-9. PubMed ID: 7149276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Myofibroblasts in desmoids].
    Shekhonin BV; Alkadarskiĭ AS; Rukosuev VS; Litvinova LV
    Arkh Patol; 1984; 46(1):31-6. PubMed ID: 6712502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Inverse Modeling Approach to Estimate Three-Dimensional Aortic Valve Interstitial Cell Stress Fiber Force Levels.
    Khang A; Meyer K; Sacks MS
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37715307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction.
    Khang A; Lejeune E; Abbaspour A; Howsmon DP; Sacks MS
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.