These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 8041228)
1. NG-nitro-L-arginine-resistant endothelium-dependent relaxation induced by acetylcholine in the rabbit renal artery. Kitagawa S; Yamaguchi Y; Kunitomo M; Sameshima E; Fujiwara M Life Sci; 1994; 55(7):491-8. PubMed ID: 8041228 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A; Labadía A; Jimenez E; Costa G Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [TBL] [Abstract][Full Text] [Related]
3. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Deng LY; Li JS; Schiffrin EL Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395 [TBL] [Abstract][Full Text] [Related]
4. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries. Ferrer M; Encabo A; Conde MV; Marín J; Balfagón G J Vasc Res; 1995; 32(5):339-46. PubMed ID: 7578802 [TBL] [Abstract][Full Text] [Related]
7. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta. Ferrer M; Marín J; Encabo A; Alonso MJ; Balfagón G Gen Pharmacol; 1999 Jul; 33(1):35-41. PubMed ID: 10428014 [TBL] [Abstract][Full Text] [Related]
8. Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava. Raffetto JD; Yu P; Reslan OM; Xia Y; Khalil RA J Vasc Surg; 2012 Jun; 55(6):1716-25. PubMed ID: 22209615 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of NO-resistant relaxation induced by acetylcholine in rabbit renal arteries. Kwon SC J Vet Med Sci; 2001 Jan; 63(1):37-40. PubMed ID: 11217060 [TBL] [Abstract][Full Text] [Related]
10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta. Martínez-Orgado J; González R; Alonso MJ; Marín J Life Sci; 1999; 64(4):269-77. PubMed ID: 10027761 [TBL] [Abstract][Full Text] [Related]
12. The involvement of K+ channels and the possible pathway of EDHF in the rabbit femoral artery. Kwon SC; Pyun WB; Park GY; Choi HK; Paik KS; Kang BS Yonsei Med J; 1999 Aug; 40(4):331-8. PubMed ID: 10487135 [TBL] [Abstract][Full Text] [Related]
13. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H; Waldron GJ; Cole WC; Triggle CR Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [TBL] [Abstract][Full Text] [Related]
14. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels. Parsons AA; Schilling L; Wahl M J Cereb Blood Flow Metab; 1991 Jul; 11(4):700-4. PubMed ID: 1646828 [TBL] [Abstract][Full Text] [Related]
15. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
17. Differential mechanisms for insulin-induced relaxations in mouse posterior tibial arteries and main mesenteric arteries. Qu D; Liu J; Lau CW; Huang Y Vascul Pharmacol; 2014 Dec; 63(3):173-7. PubMed ID: 25446161 [TBL] [Abstract][Full Text] [Related]
18. Endothelium-dependent relaxation resistant to N omega-nitro-L-arginine in the rat hepatic artery and aorta. Zygmunt PM; Grundemar L; Högestätt ED Acta Physiol Scand; 1994 Sep; 152(1):107-14. PubMed ID: 7810328 [TBL] [Abstract][Full Text] [Related]
19. Nitric-oxide-related and non-related mechanisms in the acetylcholine-evoked relaxations in cat femoral arteries. Alonso MJ; Salaices M; Sánchez-Ferrer CF; Ponte A; López-Rico M; Marín J J Vasc Res; 1993; 30(6):339-47. PubMed ID: 7694666 [TBL] [Abstract][Full Text] [Related]
20. Endothelium-independent relaxations to acetylcholine and A23187 in the human umbilical artery. Xie H; Triggle CR J Vasc Res; 1994; 31(2):92-105. PubMed ID: 8117864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]