BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8041719)

  • 1. A carbonic anhydrase from the archaeon Methanosarcina thermophila.
    Alber BE; Ferry JG
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6909-13. PubMed ID: 8041719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the {gamma} class of carbonic anhydrases.
    Zimmerman SA; Tomb JF; Ferry JG
    J Bacteriol; 2010 Mar; 192(5):1353-60. PubMed ID: 20023030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum.
    Satoh D; Hiraoka Y; Colman B; Matsuda Y
    Plant Physiol; 2001 Aug; 126(4):1459-70. PubMed ID: 11500545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi.
    Soto AR; Zheng H; Shoemaker D; Rodriguez J; Read BA; Wahlund TM
    Appl Environ Microbiol; 2006 Aug; 72(8):5500-11. PubMed ID: 16885304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, Characterization, cDNA Cloning, and Bioinformatic Analysis of Zinc-Binding Protein from
    Chen C; Li W; Gao J; Cao W; Qin X; Zheng H; Lin H; Chen Z
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of essential glutamates in the acetate kinase from Methanosarcina thermophila.
    Singh-Wissmann K; Ingram-Smith C; Miles RD; Ferry JG
    J Bacteriol; 1998 Mar; 180(5):1129-34. PubMed ID: 9495750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response.
    Slaymaker DH; Navarre DA; Clark D; del Pozo O; Martin GB; Klessig DF
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11640-5. PubMed ID: 12185253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.
    Bharti RK; Srivastava S; Thakur IS
    PLoS One; 2014; 9(3):e91300. PubMed ID: 24619032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread dissolved inorganic carbon-modifying toolkits in genomes of autotrophic
    Scott KM; Payne RR; Gahramanova A
    Appl Environ Microbiol; 2024 Feb; 90(2):e0155723. PubMed ID: 38299815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic anhydrase versatility: from pH regulation to CO
    Supuran CT
    Front Mol Biosci; 2023; 10():1326633. PubMed ID: 38028557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Biocatalytic Processes for CO
    Villa R; Nieto S; Donaire A; Lozano P
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide equivalent emissions from corn silage fermentation.
    Krueger LA; Koester LR; Jones DF; Spangler DA
    Front Microbiol; 2022; 13():1092315. PubMed ID: 36699579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encoded C
    Chen S; Peng W; Ansah EO; Xiong F; Wu Y
    Plant Signal Behav; 2022 Dec; 17(1):2115634. PubMed ID: 36102341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus Genomes Harbor Only MpsAB-Like Bicarbonate Transporter but Not Carbonic Anhydrase as Dissolved Inorganic Carbon Supply System.
    Fan SH; Liberini E; Götz F
    Microbiol Spectr; 2021 Dec; 9(3):e0097021. PubMed ID: 34730408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MpsAB Bicarbonate Transporter Is Superior to Carbonic Anhydrase in Biofilm-Forming Bacteria with Limited CO
    Fan SH; Matsuo M; Huang L; Tribelli PM; Götz F
    Microbiol Spectr; 2021 Sep; 9(1):e0030521. PubMed ID: 34287032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in understanding the physiological role and locations of carbonic anhydrases in C3 plant cells.
    Rudenko NN; Ignatova LK; Nadeeva-Zhurikova EM; Fedorchuk TP; Ivanov BN; Borisova-Mubarakshina MM
    Protoplasma; 2021 Mar; 258(2):249-262. PubMed ID: 33118061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase.
    Vogler M; Karan R; Renn D; Vancea A; Vielberg MT; Grötzinger SW; DasSarma P; DasSarma S; Eppinger J; Groll M; Rueping M
    Front Microbiol; 2020; 11():742. PubMed ID: 32411108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae.
    Jensen EL; Maberly SC; Gontero B
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32331234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonic anhydrase modification for carbon management.
    Giri A; Pant D
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1294-1318. PubMed ID: 31797268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1.
    Kim S; Sung J; Yeon J; Choi SH; Jin MS
    Mol Cells; 2019 Jun; 42(6):460-469. PubMed ID: 31250619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.