These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 8041739)
1. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Chae HZ; Uhm TB; Rhee SG Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7022-6. PubMed ID: 8041739 [TBL] [Abstract][Full Text] [Related]
2. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. Chae HZ; Kim IH; Kim K; Rhee SG J Biol Chem; 1993 Aug; 268(22):16815-21. PubMed ID: 8344960 [TBL] [Abstract][Full Text] [Related]
3. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. Baker LM; Poole LB J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184 [TBL] [Abstract][Full Text] [Related]
4. A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Chae HZ; Rhee SG Biofactors; 1994 May; 4(3-4):177-80. PubMed ID: 7916964 [TBL] [Abstract][Full Text] [Related]
5. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. LES Netto ; Chae HZ; Kang SW; Rhee SG; Stadtman ER J Biol Chem; 1996 Jun; 271(26):15315-21. PubMed ID: 8663080 [TBL] [Abstract][Full Text] [Related]
6. A new antioxidant with alkyl hydroperoxide defense properties in yeast. Lee J; Spector D; Godon C; Labarre J; Toledano MB J Biol Chem; 1999 Feb; 274(8):4537-44. PubMed ID: 9988687 [TBL] [Abstract][Full Text] [Related]
7. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Chae HZ; Robison K; Poole LB; Church G; Storz G; Rhee SG Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7017-21. PubMed ID: 8041738 [TBL] [Abstract][Full Text] [Related]
9. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. Seo MS; Kang SW; Kim K; Baines IC; Lee TH; Rhee SG J Biol Chem; 2000 Jul; 275(27):20346-54. PubMed ID: 10751410 [TBL] [Abstract][Full Text] [Related]
10. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
11. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Monteiro G; Horta BB; Pimenta DC; Augusto O; Netto LE Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4886-91. PubMed ID: 17360337 [TBL] [Abstract][Full Text] [Related]
12. A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization. Huang CY; Chen YT; Wen L; Sheu DC; Lin CT Mol Biol Rep; 2014 Jan; 41(1):155-64. PubMed ID: 24194195 [TBL] [Abstract][Full Text] [Related]
13. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Lee SM; Park JW Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566 [TBL] [Abstract][Full Text] [Related]
14. Role of the cysteine residues in the alpha1,2-mannosidase involved in N-glycan biosynthesis in Saccharomyces cerevisiae. The conserved Cys340 and Cys385 residues form an essential disulfide bond. Lipari F; Herscovics A J Biol Chem; 1996 Nov; 271(44):27615-22. PubMed ID: 8910350 [TBL] [Abstract][Full Text] [Related]
15. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related]
16. Redox-dependent stability of the γ-glutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation. Kumar S; Kasturia N; Sharma A; Datt M; Bachhawat AK Biochem J; 2013 Feb; 449(3):783-94. PubMed ID: 23126248 [TBL] [Abstract][Full Text] [Related]
17. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Ellis HR; Poole LB Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227 [TBL] [Abstract][Full Text] [Related]
18. AOP2 (antioxidant protein 2): structure and function of a unique thiol-specific antioxidant. Phelan SA Antioxid Redox Signal; 1999; 1(4):571-84. PubMed ID: 11233154 [TBL] [Abstract][Full Text] [Related]
19. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Nielsen MH; Kidmose RT; Jenner LB Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):158-67. PubMed ID: 26894543 [TBL] [Abstract][Full Text] [Related]
20. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Kong W; Shiota S; Shi Y; Nakayama H; Nakayama K Biochem J; 2000 Oct; 351(Pt 1):107-14. PubMed ID: 10998352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]