These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8041813)

  • 21. Evaluation of the implant type tissue-engineered cartilage by scanning acoustic microscopy.
    Tanaka Y; Saijo Y; Fujihara Y; Yamaoka H; Nishizawa S; Nagata S; Ogasawara T; Asawa Y; Takato T; Hoshi K
    J Biosci Bioeng; 2012 Feb; 113(2):252-7. PubMed ID: 22138383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and assessment of a tissue-engineered model of human phalanges and a small joint.
    Landis WJ; Jacquet R; Hillyer J; Lowder E; Yanke A; Siperko L; Asamura S; Kusuhara H; Enjo M; Chubinskaya S; Potter K; Isogai N
    Orthod Craniofac Res; 2005 Nov; 8(4):303-12. PubMed ID: 16238611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable polymer scaffolds for tissue engineering.
    Freed LE; Vunjak-Novakovic G; Biron RJ; Eagles DB; Lesnoy DC; Barlow SK; Langer R
    Biotechnology (N Y); 1994 Jul; 12(7):689-93. PubMed ID: 7764913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of fiber orientation in electrospun polymer scaffolds on viability, adhesion and differentiation of articular chondrocytes.
    Schneider T; Kohl B; Sauter T; Kratz K; Lendlein A; Ertel W; Schulze-Tanzil G
    Clin Hemorheol Microcirc; 2012; 52(2-4):325-36. PubMed ID: 22975946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Preliminary study of constructing tissue-engineered cartilage with the endoskeletal scaffold of HDPE by bone marrow stromal cells].
    Zhu L; Jiang H; Zhou GD; Wu YJ; Luo XS
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 Sep; 24(5):377-81. PubMed ID: 19119642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of phalanges and small joints by tissue-engineering.
    Isogai N; Landis W; Kim TH; Gerstenfeld LC; Upton J; Vacanti JP
    J Bone Joint Surg Am; 1999 Mar; 81(3):306-16. PubMed ID: 10199268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectable cartilage using polyethylene oxide polymer substrates.
    Sims CD; Butler PE; Casanova R; Lee BT; Randolph MA; Lee WP; Vacanti CA; Yaremchuk MJ
    Plast Reconstr Surg; 1996 Oct; 98(5):843-50. PubMed ID: 8823024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.
    Dai W; Kawazoe N; Lin X; Dong J; Chen G
    Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of human cartilage rods: potential application for penile prostheses.
    Kim BS; Yoo JJ; Atala A
    J Urol; 2002 Oct; 168(4 Pt 2):1794-7. PubMed ID: 12352361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model.
    Mueller-Rath R; Gavénis K; Gravius S; Andereya S; Mumme T; Schneider U
    Biomed Mater Eng; 2007; 17(6):357-66. PubMed ID: 18032817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects.
    Vacanti CA; Kim W; Upton J; Mooney D; Vacanti JP
    Tissue Eng; 1995; 1(3):301-8. PubMed ID: 19877908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone marrow genesis after subcutaneous delivery of rat osteogenic cell-seeded biodegradable scaffolds into nude mice.
    Gomi K; Kanazashi M; Lickorish D; Arai T; Davies JE
    J Biomed Mater Res A; 2004 Dec; 71(4):602-7. PubMed ID: 15499636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transplanted tissue-engineered cartilage.
    Christophel JJ; Chang JS; Park SS
    Arch Facial Plast Surg; 2006; 8(2):117-22. PubMed ID: 16549738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering cartilage growth and development.
    Kaufman MR; Tobias GW
    Clin Plast Surg; 2003 Oct; 30(4):539-46. PubMed ID: 14621301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chondrogenesis of myoblasts in biodegradable poly-lactide-co-glycolide scaffolds.
    Gu Y; Chen P; Yang Y; Shi K; Wang Y; Zhu W; Zhu G
    Mol Med Rep; 2013 Mar; 7(3):1003-9. PubMed ID: 23255123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering.
    Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL
    J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold.
    Zhang J; Liu L; Gao Z; Li L; Feng X; Wu W; Ma Q; Cheng X; Chen F; Mao T
    J Oral Maxillofac Surg; 2009 Feb; 67(2):257-64. PubMed ID: 19138597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.