These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 8041916)
21. The utility of genetically modified mouse assays for identifying human carcinogens: a basic understanding and path forward. The Alternatives to Carcinogenicity Testing Committee ILSI HESI. MacDonald J; French JE; Gerson RJ; Goodman J; Inoue T; Jacobs A; Kasper P; Keller D; Lavin A; Long G; McCullough B; Sistare FD; Storer R; van der Laan JW Toxicol Sci; 2004 Feb; 77(2):188-94. PubMed ID: 14657512 [TBL] [Abstract][Full Text] [Related]
22. The results of assays in Drosophila as indicators of exposure to carcinogens. Vogel EW; Graf U; Frei HJ; Nivard MM IARC Sci Publ; 1999; (146):427-70. PubMed ID: 10353398 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans. Osimitz TG; Droege W; Boobis AR; Lake BG Food Chem Toxicol; 2013 Oct; 60():550-62. PubMed ID: 23954551 [TBL] [Abstract][Full Text] [Related]
24. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA's ToxRefDB. Knudsen TB; Martin MT; Kavlock RJ; Judson RS; Dix DJ; Singh AV Reprod Toxicol; 2009 Sep; 28(2):209-19. PubMed ID: 19446433 [TBL] [Abstract][Full Text] [Related]
25. Toxicity characterization of environmental chemicals by the US National Toxicology Program: an overview. Chhabra RS; Bucher JR; Wolfe M; Portier C Int J Hyg Environ Health; 2003 Aug; 206(4-5):437-45. PubMed ID: 12971699 [TBL] [Abstract][Full Text] [Related]
26. The transgenic mouse assay as an alternative test method for regulatory carcinogenicity studies--implications for REACH. Wells MY; Williams ES Regul Toxicol Pharmacol; 2009 Mar; 53(2):150-5. PubMed ID: 19126422 [TBL] [Abstract][Full Text] [Related]
27. Neonatal mouse assay for tumorigenicity: alternative to the chronic rodent bioassay. Flammang TJ; Tungeln LS; Kadlubar FF; Fu PP Regul Toxicol Pharmacol; 1997 Oct; 26(2):230-40. PubMed ID: 9356286 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of the carcinogenicity of 1,1-dichloroethylene (vinylidene chloride). Roberts SM; Jordan KE; Warren DA; Britt JK; James RC Regul Toxicol Pharmacol; 2002 Feb; 35(1):44-55. PubMed ID: 11846635 [TBL] [Abstract][Full Text] [Related]
29. Strategy for genotoxicity testing--metabolic considerations. Ku WW; Bigger A; Brambilla G; Glatt H; Gocke E; Guzzie PJ; Hakura A; Honma M; Martus HJ; Obach RS; Roberts S; Mutat Res; 2007 Feb; 627(1):59-77. PubMed ID: 17141553 [TBL] [Abstract][Full Text] [Related]
30. A rational approach to risk assessment requires the use of biological information: an analysis of the National Toxicology Program (NTP), final report of the advisory review by the NTP Board of Scientific Counselors. Goodman JI Regul Toxicol Pharmacol; 1994 Feb; 19(1):51-9. PubMed ID: 8159815 [TBL] [Abstract][Full Text] [Related]
31. Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention. Rudel RA; Attfield KR; Schifano JN; Brody JG Cancer; 2007 Jun; 109(12 Suppl):2635-66. PubMed ID: 17503434 [TBL] [Abstract][Full Text] [Related]
32. The weight of the evidence among group C carcinogens. Engler R; Rinde E; Frick C; Quest J Qual Assur; 1991 Oct; 1(1):51-69. PubMed ID: 1669970 [TBL] [Abstract][Full Text] [Related]
33. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Contrera JF; Jacobs AC; DeGeorge JJ Regul Toxicol Pharmacol; 1997 Apr; 25(2):130-45. PubMed ID: 9185889 [TBL] [Abstract][Full Text] [Related]
34. NTP toxicology and carcinogenesis studies of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) (CAS No. 57465-28-8) in female Harlan Sprague-Dawley rats (Gavage Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2006 Jan; (520):4-246. PubMed ID: 16628245 [TBL] [Abstract][Full Text] [Related]
35. Carcinogenic chemical-response "fingerprint" for male F344 rats exposed to a series of 195 chemicals: implications for predicting carcinogens with transgenic models. Johnson FM Environ Mol Mutagen; 1999; 34(4):234-45. PubMed ID: 10618171 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of the toxicity forecasting capability of EPA's ToxCast Phase I data: can ToxCast in vitro assays predict carcinogenicity? Benigni R J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(3):201-12. PubMed ID: 24024519 [TBL] [Abstract][Full Text] [Related]
37. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency. Wang NC; Venkatapathy R; Bruce RM; Moudgal C Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756 [TBL] [Abstract][Full Text] [Related]
38. The redundancy of mouse carcinogenicity bioassays. Schach von Wittenau M; Estes PC Fundam Appl Toxicol; 1983; 3(6):631-9. PubMed ID: 6662305 [TBL] [Abstract][Full Text] [Related]
39. A perspective on current and future uses of alternative models for carcinogenicity testing. Goodman JI Toxicol Pathol; 2001; 29 Suppl():173-6. PubMed ID: 11695554 [TBL] [Abstract][Full Text] [Related]
40. NTP Comparative Initiation/Promotion Skin Paint Studies of B6C3F1 Mice, Swiss (CD-1(R)) Mice, and SENCAR Mice. National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1996 Feb; 441():1-201. PubMed ID: 12595922 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]