These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 804261)

  • 1. X-ray depth doses from linear accelerators in the energy range from 10 to 32 Mev.
    Podgorsak EB; Rawlinson JA; Johns HE
    Am J Roentgenol Radium Ther Nucl Med; 1975 Jan; 123(1):182-91. PubMed ID: 804261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK; Biggs PJ
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of the high-energy photon beam of a 25-MeV accelerator.
    Luxton G; Astrahan MA
    Med Phys; 1988; 15(1):82-7. PubMed ID: 3127667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons.
    Kainz KK; Hogstrom KR; Antolak JA; Almond PR; Bloch CD
    Phys Med Biol; 2005 Jan; 50(1):N1-10. PubMed ID: 15715431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.
    Parsons D; Robar JL
    Med Phys; 2012 Jul; 39(7):4568-78. PubMed ID: 22830788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.
    Wang J; Trovati S; Borchard PM; Loo BW; Maxim PG; Fahrig R
    Med Phys; 2017 Dec; 44(12):6610-6620. PubMed ID: 28983960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation parameters of 6 to 20 MeV scanning electron beams from the Saturne linear accelerator.
    Pfalzner PM; Clarke HC
    Med Phys; 1982; 9(1):117-20. PubMed ID: 6804766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo-based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry.
    Czarnecki D; Poppe B; Zink K
    Med Phys; 2017 Jun; 44(6):2569-2580. PubMed ID: 28369978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical aspects of a rotational total skin electron irradiation.
    Podgorsak EB; Pla C; Pla M; Lefebvre PY; Heese R
    Med Phys; 1983; 10(2):159-68. PubMed ID: 6408365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-field electron dosimetry for the Philips SL25 linear accelerator.
    Rashid H; Islam MK; Gaballa H; Rosenow UF; Ting JY
    Med Phys; 1990; 17(4):710-4. PubMed ID: 2120560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beam characteristics of a new generation 50 MeV racetrack microtron.
    Masterson ME; Chui CS; Febo R; Hung JD; Fuks Z; Mohan R; Ling CC; Kutcher GJ; Bjork S; Enstrom J
    Med Phys; 1995 Jun; 22(6):781-92. PubMed ID: 7565367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation.
    Kim H; Kim B; Baek J; Oh Y; Yun S; Jang H
    Br J Radiol; 2018 Apr; 91(1084):20170376. PubMed ID: 29338304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the electron pencil beam redefinition algorithm to electron arc therapy.
    Chi PC; Hogstrom KR; Starkschall G; Boyd RA; Tucker SL; Antolak JA
    Med Phys; 2006 Jul; 33(7):2369-83. PubMed ID: 16898439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
    McLaughlin DJ; Hogstrom KR; Carver RL; Gibbons JP; Shikhaliev PM; Matthews KL; Clarke T; Henderson A; Liang EP
    Med Phys; 2015 Sep; 42(9):5517-29. PubMed ID: 26328999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth dose characteristics of elongated fields for electron beams from a 20-MeV accelerator.
    Sharma SC; Wilson DL
    Med Phys; 1985; 12(4):419-23. PubMed ID: 3929048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.