These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8042906)

  • 21. Degradation of methyl parathion by Pseudomonas putida.
    Rani NL; Lalithakumari D
    Can J Microbiol; 1994 Dec; 40(12):1000-6. PubMed ID: 7704828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04.
    Nayak AS; Sanjeev Kumar S; Santosh Kumar M; Anjaneya O; Karegoudar TB
    FEMS Microbiol Lett; 2011 Jul; 320(2):128-34. PubMed ID: 21545490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite.
    Mallick S
    Chemosphere; 2019 Mar; 219():748-755. PubMed ID: 30557732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.
    Safinowski M; Meckenstock RU
    Environ Microbiol; 2006 Feb; 8(2):347-52. PubMed ID: 16423020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 27. [Degradation of phenanthrene by mutant strains--naphthalene degraders].
    Kosheleva IA; Balasova NV; Izmalkova TIu; Filonov AE; Sokolov SL; Slepen'kin AV; Boronin AM
    Mikrobiologiia; 2000; 69(6):783-9. PubMed ID: 11195577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture.
    Marozava S; Mouttaki H; Müller H; Laban NA; Probst AJ; Meckenstock RU
    Biodegradation; 2018 Feb; 29(1):23-39. PubMed ID: 29177812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.
    Lee K; Park JW; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initial reactions in the oxidation of naphthalene by Pseudomonas putida.
    Jeffrey AM; Yeh HJ; Jerina DM; Patel TR; Davey JF; Gibson DT
    Biochemistry; 1975 Feb; 14(3):575-84. PubMed ID: 234247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida.
    Lu TQ; Mao SY; Sun SL; Yang WL; Ge F; Dai YJ
    J Agric Food Chem; 2016 Jun; 64(24):4866-75. PubMed ID: 27230024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic degradation of polycyclic aromatic hydrocarbons.
    Meckenstock RU; Safinowski M; Griebler C
    FEMS Microbiol Ecol; 2004 Jul; 49(1):27-36. PubMed ID: 19712381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture.
    Annweiler E; Materna A; Safinowski M; Kappler A; Richnow HH; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2000 Dec; 66(12):5329-33. PubMed ID: 11097910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation characteristics of quinoline by Pseudomonas putida.
    Lin Q; Jianlong W
    Bioresour Technol; 2010 Oct; 101(19):7683-6. PubMed ID: 20554200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial oxidation of dimethylnaphthalene isomers.
    Miyachi N; Tanaka T; Suzuki T; Hotta Y; Omori T
    Appl Environ Microbiol; 1993 May; 59(5):1504-6. PubMed ID: 8517744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.
    Nigam A; Phale PS; Wangikar PP
    Bioresour Technol; 2012 Jun; 114():484-91. PubMed ID: 22494573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initial steps in the degradation of 3,4-dimethylbenzoic acid by Pseudomonas putida strain DMB.
    Baggi G; Bernasconi S; Zangrossi M
    FEMS Microbiol Lett; 1996 Apr; 137(2-3):129-34. PubMed ID: 8998974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A unique global metabolic trait of
    Dhamale T; Saha BK; Papade SE; Singh S; Phale PS
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35925665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further structural analysis of rat liver microsomal metabolites of 2-methylnaphthalene.
    Breger RK; Novak RF; Franklin RB; Rickert D; Lech JJ
    Drug Metab Dispos; 1983; 11(4):319-23. PubMed ID: 6137337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.