BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8043149)

  • 1. Relative rates of nucleotide substitution in the chloroplast genome.
    Gaut BS; Muse SV; Clegg MT
    Mol Phylogenet Evol; 1993 Jun; 2(2):89-96. PubMed ID: 8043149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals.
    Matsuoka Y; Yamazaki Y; Ogihara Y; Tsunewaki K
    Mol Biol Evol; 2002 Dec; 19(12):2084-91. PubMed ID: 12446800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rates of nucleotide substitution in Cornaceae (Cornales)-Pattern of variation and underlying causal factors.
    Xiang QY; Thorne JL; Seo TK; Zhang W; Thomas DT; Ricklefs RE
    Mol Phylogenet Evol; 2008 Oct; 49(1):327-42. PubMed ID: 18682295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants.
    Notsu Y; Masood S; Nishikawa T; Kubo N; Akiduki G; Nakazono M; Hirai A; Kadowaki K
    Mol Genet Genomics; 2002 Dec; 268(4):434-45. PubMed ID: 12471441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites.
    Mulligan RM; Chang KL; Chou CC
    Mol Biol Evol; 2007 Sep; 24(9):1971-81. PubMed ID: 17591603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel rate heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects.
    Soria-Hernanz DF; Braverman JM; Hamilton MB
    Mol Biol Evol; 2008 Jul; 25(7):1282-96. PubMed ID: 18385219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships.
    Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM
    In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of maize chloroplast rpS11 with conserved amino acid sequence between eukaryotes, bacteria and plastids.
    Markmann-Mulisch U; Subramanian AR
    Biochem Int; 1988 Oct; 17(4):655-64. PubMed ID: 3149198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice.
    Yamane K; Yano K; Kawahara T
    DNA Res; 2006 Oct; 13(5):197-204. PubMed ID: 17110395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes.
    Shimada H; Sugiura M
    Nucleic Acids Res; 1991 Mar; 19(5):983-95. PubMed ID: 1708498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth view of structure, activity, and evolution of rice chromosome 10.
    Rice Chromosome 10 Sequencing Consortium
    Science; 2003 Jun; 300(5625):1566-9. PubMed ID: 12791992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rates of genome evolution and branching order from whole genome analysis.
    Huttley GA; Wakefield MJ; Easteal S
    Mol Biol Evol; 2007 Aug; 24(8):1722-30. PubMed ID: 17494028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative analyses of QTL for important agronomic traits between maize and rice].
    Yan JB; Tang H; Huang YQ; Zheng YL; Li JS
    Yi Chuan Xue Bao; 2004 Dec; 31(12):1401-7. PubMed ID: 15633647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.
    Drouin G; Daoud H; Xia J
    Mol Phylogenet Evol; 2008 Dec; 49(3):827-31. PubMed ID: 18838124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of chloroplast RNA editing.
    Tillich M; Lehwark P; Morton BR; Maier UG
    Mol Biol Evol; 2006 Oct; 23(10):1912-21. PubMed ID: 16835291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL.
    Lewis LA; Mishler BD; Vilgalys R
    Mol Phylogenet Evol; 1997 Jun; 7(3):377-93. PubMed ID: 9187096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid divergence of codon usage patterns within the rice genome.
    Wang HC; Hickey DA
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S6. PubMed ID: 17288579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes.
    Bennetzen JL; SanMiguel P; Liu CN; Chen M; Tikhonov A; Costa de Oliveira A; Jin YK; Avramova Z; Woo SS; Zhang H; Wing RA
    Symp Soc Exp Biol; 1996; 50():1-3. PubMed ID: 9039427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes.
    Broughton RE; Reneau PC
    Mol Biol Evol; 2006 Aug; 23(8):1516-24. PubMed ID: 16705079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of artificial selection on the maize genome.
    Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS
    Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.