BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8043298)

  • 1. Modulation of cyclic guanosine monophosphate production during Escherichia coli septic shock.
    Rosenberg RB; Broner CW; O'Dorisio MS
    Biochem Med Metab Biol; 1994 Apr; 51(2):149-55. PubMed ID: 8043298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic nucleotides and vasoactive intestinal peptide production in a rabbit model of Escherichia coli septicemia.
    Broner CW; O'Dorisio MS; Rosenberg RB; O'Dorisio TM
    Am J Med Sci; 1995 May; 309(5):267-77. PubMed ID: 7537447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a nitric oxide synthase inhibitor in humans with septic shock.
    Petros A; Lamb G; Leone A; Moncada S; Bennett D; Vallance P
    Cardiovasc Res; 1994 Jan; 28(1):34-9. PubMed ID: 7509259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The insulin-induced increase of guanosine-3',5'-cyclic monophosphate in human platelets is mediated by nitric oxide.
    Trovati M; Massucco P; Mattiello L; Piretto V; Cavalot F; Mularoni E; Anfossi G
    Diabetes; 1996 Jun; 45(6):768-70. PubMed ID: 8635651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide production regulates cGMP formation and calcium influx in pancreatic acinar cells.
    Gukovskaya A; Pandol S
    Am J Physiol; 1994 Mar; 266(3 Pt 1):G350-6. PubMed ID: 8166275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli lipopolysaccharide downregulates soluble guanylate cyclase in pulmonary artery smooth muscle.
    Scott WS; Nakayama DK
    J Surg Res; 1998 Dec; 80(2):309-14. PubMed ID: 9878330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of nitric oxide synthase in experimental gram-negative sepsis.
    Evans T; Carpenter A; Silva A; Cohen J
    J Infect Dis; 1994 Feb; 169(2):343-9. PubMed ID: 7508968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial?
    Nava E; Palmer RM; Moncada S
    Lancet; 1991 Dec 21-28; 338(8782-8783):1555-7. PubMed ID: 1683974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasoactive intestinal peptide stimulation of cyclic guanosine monophosphate formation: further evidence for a role of nitric oxide synthase and cytosolic guanylate cyclase in rat pinealocytes.
    Spessert R
    Endocrinology; 1993 Jun; 132(6):2513-7. PubMed ID: 7684978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective and pathological roles of nitric oxide in endotoxin shock.
    Wright CE; Rees DD; Moncada S
    Cardiovasc Res; 1992 Jan; 26(1):48-57. PubMed ID: 1516112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism.
    Marsden PA; Ballermann BJ
    J Exp Med; 1990 Dec; 172(6):1843-52. PubMed ID: 1979590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth hormone-releasing factor increases somatostatin release and mRNA levels in the rat periventricular nucleus via nitric oxide by activation of guanylate cyclase.
    Aguila MC
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):782-6. PubMed ID: 7904758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nitric oxide synthase inhibition combined with nitric oxide inhalation in a porcine model of endotoxin shock.
    Klemm P; Thiemermann C; Winklmaier G; Martorana PA; Henning R
    Br J Pharmacol; 1995 Jan; 114(2):363-8. PubMed ID: 7533615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells.
    Beasley D; Schwartz JH; Brenner BM
    J Clin Invest; 1991 Feb; 87(2):602-8. PubMed ID: 1671393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intercellular communication via nitric oxide and its regulation in coupling of cyclic GMP synthesis upon stimulation of muscarinic cholinergic receptors in rat superior cervical sympathetic ganglia.
    Ando M; Tatematsu T; Kunii S; Nagata Y
    Brain Res; 1994 Jul; 650(2):283-8. PubMed ID: 7525017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of nitric oxide in diaphragmatic dysfunction genesis during sepsis in rats].
    Samb A; Boczkowski J; Danialou G; Lanone S; Cisse F; Aubier M
    Dakar Med; 2000; 45(2):126-30. PubMed ID: 15779166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach in the treatment of hypotension in human septic shock by NG-monomethyl-L-arginine, an inhibitor of the nitric oxide synthetase.
    Schilling J; Cakmakci M; Bättig U; Geroulanos S
    Intensive Care Med; 1993; 19(4):227-31. PubMed ID: 7690053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide inhibition in the treatment of the sepsis syndrome is detrimental to tissue oxygenation.
    Statman R; Cheng W; Cunningham JN; Henderson JL; Damiani P; Siconolfi A; Rogers D; Horovitz JH
    J Surg Res; 1994 Jul; 57(1):93-8. PubMed ID: 8041156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet-activating factor augments lipopolysaccharide-induced nitric oxide formation by rat Kupffer cells.
    Mustafa SB; Howard KM; Olson MS
    Hepatology; 1996 Jun; 23(6):1622-30. PubMed ID: 8675186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide: a modulator for the epidermal growth factor receptor expression in developing ovarian granulosa cells.
    Hattori M; Sakamoto K; Fujihara N; Kojima I
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C812-8. PubMed ID: 8638661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.