BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8044501)

  • 1. Estimation of body composition in Chinese and British men by ultrasonographic assessment of segmental adipose tissue volume.
    Eston R; Evans R; Fu F
    Br J Sports Med; 1994 Mar; 28(1):9-13. PubMed ID: 8044501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of DXA-determined whole body fat from skinfolds: importance of including skinfolds from the thigh and calf in young, healthy men and women.
    Eston RG; Rowlands AV; Charlesworth S; Davies A; Hoppitt T
    Eur J Clin Nutr; 2005 May; 59(5):695-702. PubMed ID: 15798775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic assessment of body composition in obese adults: overcoming the limitations of the skinfold caliper.
    Kuczmarski RJ; Fanelli MT; Koch GG
    Am J Clin Nutr; 1987 Apr; 45(4):717-24. PubMed ID: 3565298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the ultrasonic technique as a method of measuring subcutaneous adipose tissue.
    Haymes EM; Lundegren HM; Loomis JL; Buskirk ER
    Ann Hum Biol; 1976 May; 3(3):245-51. PubMed ID: 962304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between bioelectric impedance and subcutaneous adipose tissue thickness measured by LIPOMETER and skinfold calipers in children.
    Jürimäe T; Sudi K; Payerl D; Leppik A; Jürimäe J; Müller R; Tafeit E
    Eur J Appl Physiol; 2003 Sep; 90(1-2):178-84. PubMed ID: 14504951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultrasound and skinfold caliper measurement of subcutaneous fat tissue.
    Weits T; van der Beek EJ; Wedel M
    Int J Obes; 1986; 10(3):161-8. PubMed ID: 3531051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting football players' dual-energy x-ray absorptiometry body composition using standard anthropometric measures.
    Oliver JM; Lambert BS; Martin SE; Green JS; Crouse SF
    J Athl Train; 2012; 47(3):257-63. PubMed ID: 22892406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound as an approach to assessing body composition.
    Fanelli MT; Kuczmarski RJ
    Am J Clin Nutr; 1984 May; 39(5):703-9. PubMed ID: 6711473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a portable ultrasonoscope in assessing the body composition of college-age women.
    Volz PA; Ostrove SM
    Med Sci Sports Exerc; 1984; 16(1):97-102. PubMed ID: 6708789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Correlation between skinfold thickness and ultrasonography in the study of subcutaneous adipose tissue in females].
    Cataldo MG; Brancato D; Brancato G; Verga S; Buscemi S; Licata G
    Ann Ital Med Int; 1997; 12(1):15-9. PubMed ID: 9409947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of subcutaneous fat and equations for predicting percent body fat from skinfold measurements: a comparison between Chinese females from two age cohorts.
    Fu FH; Fung L
    J Sports Med Phys Fitness; 1995 Sep; 35(3):224-7. PubMed ID: 8775651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of conventional anthropometric techniques for predicting body composition in healthy Chinese adults.
    Eston RG; Fu F; Fung L
    Br J Sports Med; 1995 Mar; 29(1):52-6. PubMed ID: 7788220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of thigh muscle and adipose tissue volume using magnetic resonance imaging and anthropometry.
    Tothill P; Stewart AD
    J Sports Sci; 2002 Jul; 20(7):563-76. PubMed ID: 12166882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of near infra-red interactance for assessment of subcutaneous and total body fat.
    Brooke-Wavell K; Jones PR; Norgan NG; Hardman AE
    Eur J Clin Nutr; 1995 Jan; 49(1):57-65. PubMed ID: 7713052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation in community surveys of total body fat of children using bioelectrical impedance or skinfold thickness measurements.
    Hammond J; Rona RJ; Chinn S
    Eur J Clin Nutr; 1994 Mar; 48(3):164-71. PubMed ID: 8194501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of subcutaneous fat measurement: comparison of skinfold calipers, ultrasound, and computed tomography.
    Orphanidou C; McCargar L; Birmingham CL; Mathieson J; Goldner E
    J Am Diet Assoc; 1994 Aug; 94(8):855-8. PubMed ID: 8046177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suprailiac or abdominal skinfold thickness measured with a skinfold caliper as a predictor of body density in Japanese adults.
    Demura S; Sato S
    Tohoku J Exp Med; 2007 Sep; 213(1):51-61. PubMed ID: 17785953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of body fat by skinfold caliper: assumptions and cadaver evidence.
    Martin AD; Ross WD; Drinkwater DT; Clarys JP
    Int J Obes; 1985; 9 Suppl 1():31-9. PubMed ID: 4066123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing subcutaneous adipose tissue by simple and portable field instruments: Skinfolds versus A-mode ultrasound measurements.
    Pérez-Chirinos Buxadé C; Solà-Perez T; Castizo-Olier J; Carrasco-Marginet M; Roy A; Marfell-Jones M; Irurtia A
    PLoS One; 2018; 13(11):e0205226. PubMed ID: 30496211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and validation of total and regional fat mass by B-mode ultrasound in Japanese pre-pubertal children.
    Midorikawa T; Ohta M; Hikihara Y; Torii S; Bemben MG; Sakamoto S
    Br J Nutr; 2011 Sep; 106(6):944-50. PubMed ID: 21736848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.