These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8045299)

  • 1. Protein-associated pigments that accumulate in the brunescent eye lens. Identification of a quinoline derivative.
    Luthra M; Ranganathan D; Ranganathan S; Balasubramanian D
    FEBS Lett; 1994 Jul; 349(1):39-44. PubMed ID: 8045299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of the yellow chromophores in individual brunescent cataracts.
    Cheng R; Lin B; Ortwerth BJ
    Exp Eye Res; 2003 Sep; 77(3):313-25. PubMed ID: 12907164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin nucleotides in human lens: regional distribution in brunescent cataracts.
    Bhat KS; Nayak S
    Indian J Ophthalmol; 1998 Dec; 46(4):233-7. PubMed ID: 10218307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic studies of brunescent cataractous lenses.
    Tomoda A; Yoneyama Y; Yamaguchi T; Kakinuma K; Kawasaki K; Yonemura D
    FEBS Lett; 1987 Jul; 219(2):472-6. PubMed ID: 3609306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of specific blue and green fluorescence in cataractous versus normal human lens fractions.
    Yappert MC; Borchman D; Byrdwell WC
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):630-6. PubMed ID: 8449681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Lens crystallin leakage in aqueous humor from human cataractous lenses].
    Kodama T
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1065-70. PubMed ID: 1759646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydroalanine crosslinks in human lens.
    Linetsky M; Hill JM; LeGrand RD; Hu F
    Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Racemization of tyrosine in the insoluble protein fraction of brunescent aging human lenses.
    Luthra M; Ranganathan D; Ranganathan S; Balasubramanian D
    J Biol Chem; 1994 Sep; 269(36):22678-82. PubMed ID: 8077220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of coloration of human lenses induced by near-ultraviolet-photo-oxidized 3-hydroxykynurenine.
    Tomoda A; Yoneyama Y; Yamaguchi T; Shirao E; Kawasaki K
    Ophthalmic Res; 1990; 22(3):152-9. PubMed ID: 2385431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K2P--a novel cross-link from human lens protein.
    Cheng R; Feng Q; Argirov OK; Ortwerth BJ
    Ann N Y Acad Sci; 2005 Jun; 1043():184-94. PubMed ID: 16037238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of a free non-tryptophan fluorophore in water-soluble fraction of human brunescent cataractous lens nucleus].
    Ando K; Shirao E; Iwakuchi Y; Shirao Y; Inoue A
    Nippon Ganka Gakkai Zasshi; 2000 Apr; 104(4):207-13. PubMed ID: 10793538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red fluorescence in older and brunescent human lenses.
    Yu NT; Kuck JF; Askren CC
    Invest Ophthalmol Vis Sci; 1979 Dec; 18(12):1278-80. PubMed ID: 511469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on human lenses: II. Distribution and solubility of fluorescent pigments in cataractous and non-cataractous lenses of Indian origin.
    Bandyopadhyay S; Chattopadhyay D; Ghosh SK; Chakrabarti B
    Photochem Photobiol; 1992 May; 55(5):765-72. PubMed ID: 1528989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro.
    Linetsky M; James HL; Ortwerth BJ
    Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.