These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Stroppolo ME; Nuzzo S; Pesce A; Rosano C; Battistoni A; Bolognesi M; Mobilio S; Desideri A Biochem Biophys Res Commun; 1998 Aug; 249(3):579-82. PubMed ID: 9731178 [TBL] [Abstract][Full Text] [Related]
23. Fourier transform infrared analysis of the interaction of azide with the active site of oxidized and reduced bovine Cu,Zn superoxide dismutase. Leone M; Cupane A; Militello V; Stroppolo ME; Desideri A Biochemistry; 1998 Mar; 37(13):4459-64. PubMed ID: 9521765 [TBL] [Abstract][Full Text] [Related]
24. Synthesis, structure, and activity of supramolecular mimics for the active site and arg141 residue of copper, zinc-superoxide dismutase. Zhou YH; Fu H; Zhao WX; Chen WL; Su CY; Sun H; Ji LN; Mao ZW Inorg Chem; 2007 Feb; 46(3):734-9. PubMed ID: 17257014 [TBL] [Abstract][Full Text] [Related]
25. Replacement of Mn(III) with Cu(II) in Bacillus stearothermophilus superoxide dismutase. Similarity of the active site to the zinc site of copper/zinc superoxide dismutase. Bannister JV; Desideri A; Rotilio G FEBS Lett; 1985 Aug; 188(1):91-5. PubMed ID: 2991020 [TBL] [Abstract][Full Text] [Related]
26. Crystal structure of peroxynitrite-modified bovine Cu,Zn superoxide dismutase. Smith CD; Carson M; van der Woerd M; Chen J; Ischiropoulos H; Beckman JS Arch Biochem Biophys; 1992 Dec; 299(2):350-5. PubMed ID: 1444476 [TBL] [Abstract][Full Text] [Related]
27. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. Strange RW; Antonyuk SV; Hough MA; Doucette PA; Valentine JS; Hasnain SS J Mol Biol; 2006 Mar; 356(5):1152-62. PubMed ID: 16406071 [TBL] [Abstract][Full Text] [Related]
28. Crystal structure of Cu / Zn superoxide dismutase from Taenia solium reveals metal-mediated self-assembly. Hernández-Santoyo A; Landa A; González-Mondragón E; Pedraza-Escalona M; Parra-Unda R; Rodríguez-Romero A FEBS J; 2011 Sep; 278(18):3308-18. PubMed ID: 21767346 [TBL] [Abstract][Full Text] [Related]
29. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. Bolognesi M; Rosano C; Losso R; Borassi A; Rizzi M; Wittenberg JB; Boffi A; Ascenzi P Biophys J; 1999 Aug; 77(2):1093-9. PubMed ID: 10423453 [TBL] [Abstract][Full Text] [Related]
30. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters. Gresh N; El Hage K; Perahia D; Piquemal JP; Berthomieu C; Berthomieu D J Comput Chem; 2014 Nov; 35(29):2096-106. PubMed ID: 25212748 [TBL] [Abstract][Full Text] [Related]
31. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site. Desideri A; Cocco D; Calabrese L; Rotilio G Biochim Biophys Acta; 1984 Mar; 785(3):111-7. PubMed ID: 6322852 [TBL] [Abstract][Full Text] [Related]
32. Investigation of the active site of Escherichia coli Cu,Zn superoxide dismutase reveals the absence of the copper-coordinated water molecule. is the water molecule really necessary for the enzymatic mechanism? Sette M; Bozzi M; Battistoni A; Fasano M; Paci M; Rotilio G FEBS Lett; 2000 Oct; 483(1):21-6. PubMed ID: 11033349 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for co-ordinated mutation of charged amino acid residues. Desideri A; Falconi M; Polticelli F; Bolognesi M; Djinovic K; Rotilio G J Mol Biol; 1992 Jan; 223(1):337-42. PubMed ID: 1731078 [TBL] [Abstract][Full Text] [Related]
34. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. V. Preparation and properties of derivatives in which both zinc and copper sites contain copper. Fee JA; Briggs RG Biochim Biophys Acta; 1975 Aug; 400(2):439-50. PubMed ID: 169909 [TBL] [Abstract][Full Text] [Related]
35. Phosphate is an inhibitor of copper-zinc superoxide dismutase. Mota de Freitas D; Valentine JS Biochemistry; 1984 Apr; 23(9):2079-82. PubMed ID: 6722136 [TBL] [Abstract][Full Text] [Related]
36. Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: insertion of valine C gamma into the substrate access channel. Hearn AS; Stroupe ME; Cabelli DE; Ramilo CA; Luba JP; Tainer JA; Nick HS; Silverman DN Biochemistry; 2003 Mar; 42(10):2781-9. PubMed ID: 12627943 [TBL] [Abstract][Full Text] [Related]
37. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase. Toyama A; Takahashi Y; Takeuchi H Biochemistry; 2004 Apr; 43(16):4670-9. PubMed ID: 15096035 [TBL] [Abstract][Full Text] [Related]
38. Carbon monoxide binding to the heme group at the dimeric interface modulates structure and copper accessibility in the Cu,Zn superoxide dismutase from Haemophilus ducreyi: in silico and in vitro evidences. Chillemi G; De Santis S; Falconi M; Mancini G; Migliorati V; Battistoni A; Pacello F; Desideri A; D'Angelo P J Biomol Struct Dyn; 2012; 30(3):269-79. PubMed ID: 22686457 [TBL] [Abstract][Full Text] [Related]
39. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787 [TBL] [Abstract][Full Text] [Related]
40. New insight into the mode of action of nickel superoxide dismutase by investigating metallopeptide substrate models. Tietze D; Breitzke H; Imhof D; Kothe E; Weston J; Buntkowsky G Chemistry; 2009; 15(2):517-23. PubMed ID: 19016282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]