These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8045573)

  • 1. Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle.
    Durfee WK; Palmer KI
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):205-16. PubMed ID: 8045573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recursive parameter identification of constrained systems: an application to electrically stimulated muscle.
    Chia TL; Chow PC; Chizeck HJ
    IEEE Trans Biomed Eng; 1991 May; 38(5):429-42. PubMed ID: 1874525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties.
    Shue G; Crago PE; Chizeck HJ
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):212-23. PubMed ID: 7868149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonlinear approach to modeling of electrically stimulated skeletal muscle.
    Gollee H; Murray-Smith DJ; Jarvis JC
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):406-15. PubMed ID: 11322528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ISOFIT: a model-based method to measure muscle-tendon properties simultaneously.
    Wagner H; Siebert T; Ellerby DJ; Marsh RL; Blickhan R
    Biomech Model Mechanobiol; 2005 Aug; 4(1):10-9. PubMed ID: 15895262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-based methods for evaluating electrically stimulated antagonist muscle controllers.
    Durfee WK
    IEEE Trans Biomed Eng; 1989 Mar; 36(3):309-21. PubMed ID: 2784126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for estimating isometric recruitment curves of electrically stimulated muscle.
    Durfee WK; MacLean KE
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):654-67. PubMed ID: 2744790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback control methods for task regulation by electrical stimulation of muscles.
    Lan N; Crago PE; Chizeck HJ
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1213-23. PubMed ID: 1774083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES.
    Giat Y; Mizrahi J; Levy M
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):664-74. PubMed ID: 8244427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle.
    Erfanian A; Chizeck HJ; Hashemi RM
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):188-202. PubMed ID: 9473842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle.
    Hunt KJ; Munih M; Donaldson NN; Barr FM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):998-1009. PubMed ID: 9691574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear joint angle control for artificially stimulated muscle.
    Veltink PH; Chizeck HJ; Crago PE; el-Bialy A
    IEEE Trans Biomed Eng; 1992 Apr; 39(4):368-80. PubMed ID: 1592402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamic modeling of isometric force production in primate eye muscle.
    Anderson SR; Lepora NF; Porrill J; Dean P
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1554-67. PubMed ID: 20442041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.
    Ahn AN; Meijer K; Full RJ
    J Exp Biol; 2006 Sep; 209(Pt 17):3370-82. PubMed ID: 16916973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle input-output model: the static dependence of force on length, recruitment, and firing period.
    Crago PE
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):871-4. PubMed ID: 1506001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.