These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 8045575)
1. Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. Roth BJ; Wikswo JP IEEE Trans Biomed Eng; 1994 Mar; 41(3):232-40. PubMed ID: 8045575 [TBL] [Abstract][Full Text] [Related]
2. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. Roth BJ IEEE Trans Biomed Eng; 1995 Dec; 42(12):1174-84. PubMed ID: 8550059 [TBL] [Abstract][Full Text] [Related]
3. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. Latimer DC; Roth BJ IEEE Trans Biomed Eng; 1998 Dec; 45(12):1449-58. PubMed ID: 9835193 [TBL] [Abstract][Full Text] [Related]
4. Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. Roth BJ J Cardiovasc Electrophysiol; 1997 Jul; 8(7):768-78. PubMed ID: 9255684 [TBL] [Abstract][Full Text] [Related]
5. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Wikswo JP; Lin SF; Abbas RA Biophys J; 1995 Dec; 69(6):2195-210. PubMed ID: 8599628 [TBL] [Abstract][Full Text] [Related]
6. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. Roth BJ J Math Biol; 1992; 30(6):633-46. PubMed ID: 1640183 [TBL] [Abstract][Full Text] [Related]
7. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models. Colli Franzone P; Pavarino LF; Scacchi S Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963 [TBL] [Abstract][Full Text] [Related]
8. Virtual cathode effects during stimulation of cardiac muscle. Two-dimensional in vivo experiments. Wikswo JP; Wisialowski TA; Altemeier WA; Balser JR; Kopelman HA; Roden DM Circ Res; 1991 Feb; 68(2):513-30. PubMed ID: 1991354 [TBL] [Abstract][Full Text] [Related]
9. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Neunlist M; Tung L Biophys J; 1995 Jun; 68(6):2310-22. PubMed ID: 7647235 [TBL] [Abstract][Full Text] [Related]
10. Cardiac strength-interval curves calculated using a bidomain tissue with a parsimonious ionic current. Galappaththige SK; Gray RA; Roth BJ PLoS One; 2017; 12(2):e0171144. PubMed ID: 28222136 [TBL] [Abstract][Full Text] [Related]
11. Role of virtual electrodes in arrhythmogenesis: pinwheel experiment revisited. Lindblom AE; Roth BJ; Trayanova NA J Cardiovasc Electrophysiol; 2000 Mar; 11(3):274-85. PubMed ID: 10749350 [TBL] [Abstract][Full Text] [Related]
12. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Knisley SB Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236 [TBL] [Abstract][Full Text] [Related]
13. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. Trayanova NA; Roth BJ; Malden LJ IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281 [TBL] [Abstract][Full Text] [Related]
14. [The mechanism of impulse initiation: high-resolution epicardial pace-mapping in rat heart]. Macchi E; Baruffi S; Bondavalli A; Cacciani F; Miragoli M; Manghi M; Musso E; Olivetti G; Rota M; Stilli D; Zaniboni M Acta Biomed Ateneo Parmense; 2001; 72(1-2):25-32. PubMed ID: 11554121 [TBL] [Abstract][Full Text] [Related]
16. Spiral wave control by a localized stimulus: a bidomain model study. Ashihara T; Namba T; Ito M; Ikeda T; Nakazawa K; Trayanova N J Cardiovasc Electrophysiol; 2004 Feb; 15(2):226-33. PubMed ID: 15028055 [TBL] [Abstract][Full Text] [Related]
17. Delayed activation and retrograde propagation in cardiac muscle: implication of virtual electrode effects. Wu J; Roden DM; Wikswo JP Ann Biomed Eng; 2000; 28(11):1318-25. PubMed ID: 11212950 [TBL] [Abstract][Full Text] [Related]