These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8045579)

  • 21. Postprandial response of gastric slow waves: correlation of serosal recordings with the electrogastrogram.
    Lin Z; Chen JD; Schirmer BD; McCallum RW
    Dig Dis Sci; 2000 Apr; 45(4):645-51. PubMed ID: 10759228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical applications of electrogastrography.
    Chen JD; McCallum RW
    Am J Gastroenterol; 1993 Sep; 88(9):1324-36. PubMed ID: 8362825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gastric slow wave rhythm identification using new approach based on noise-assisted multivariate empirical mode decomposition and Hilbert-Huang transform.
    Komorowski D; Mika B
    Neurogastroenterol Motil; 2021 Mar; 33(3):e13997. PubMed ID: 33043542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrogastrography: possibilities and limits.
    Pezzolla F; Riezzo G; Giorgio I; Thouvenot J
    Acta Gastroenterol Belg; 1989; 52(5-6):421-8. PubMed ID: 2486012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressed time and frequency recording of the electrogastrogram by individual wave detection.
    Kolev V
    Physiol Meas; 2000 Feb; 21(1):N1-10. PubMed ID: 10720016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear adaptive noise compensation in electrogastrograms recorded from healthy dogs.
    Mintchev MP; Girard A; Bowes KL
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):239-48. PubMed ID: 10721631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Recording of data and immediate interpretation of myoelectric activity of the stomach--electrogastrography].
    Coenen C; Theus M; Theus U
    Biomed Tech (Berl); 1992 May; 37(5):99-105. PubMed ID: 1633256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artifact reduction in electrogastrogram based on empirical mode decomposition method.
    Liang H; Lin Z; McCallum RW
    Med Biol Eng Comput; 2000 Jan; 38(1):35-41. PubMed ID: 10829388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of gastric contractions from the cutaneous electrogastrogram.
    Chen JD; Richards RD; McCallum RW
    Am J Gastroenterol; 1994 Jan; 89(1):79-85. PubMed ID: 8273804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of imagining eating favorable and unfavorable foods on gastric motility indexed by electrogastrographic (EGG) activities.
    Zhou R; Hu S
    Percept Mot Skills; 2006 Dec; 103(3):829-33. PubMed ID: 17326509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis.
    Irimia A; Gallucci MR; Richards WO; Bradshaw LA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3110-3. PubMed ID: 17946157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrogastrography in neonates.
    Tomomasa T; Miyazaki M; Nako Y; Kuroume T
    J Perinatol; 1994; 14(5):417-21. PubMed ID: 7830160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The electrogastrogram and its analysis.
    Kingma YJ
    Crit Rev Biomed Eng; 1989; 17(2):105-32. PubMed ID: 2663350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability of percent distribution of power of the electrogastrogram in recognizing gastric electrical uncoupling.
    Mintchev MP; Stickel A; Otto SJ; Bowes KL
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1288-91. PubMed ID: 9401229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitory effects of cholecystokinin on postprandial gastric myoelectrical activity.
    Chen JD; Lin ZY; Parolisi S; McCallum RW
    Dig Dis Sci; 1995 Dec; 40(12):2614-22. PubMed ID: 8536521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of canine model of gastric electrical uncoupling using recurrence quantification analysis.
    Price CN; Westwick DT; Mintchev MP
    Dig Dis Sci; 2005 May; 50(5):885-92. PubMed ID: 15906764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.