These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8045899)

  • 1. Transcriptional regulation of Bacillus subtilis citrate synthase genes.
    Jin S; Sonenshein AL
    J Bacteriol; 1994 Aug; 176(15):4680-90. PubMed ID: 8045899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of two distinct Bacillus subtilis citrate synthase genes.
    Jin S; Sonenshein AL
    J Bacteriol; 1994 Aug; 176(15):4669-79. PubMed ID: 8045898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes.
    Mittal M; Picossi S; Sonenshein AL
    J Bacteriol; 2009 Feb; 191(3):862-72. PubMed ID: 19011028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis.
    Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL
    J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis.
    Matsuno K; Blais T; Serio AW; Conway T; Henkin TM; Sonenshein AL
    J Bacteriol; 1999 Jun; 181(11):3382-91. PubMed ID: 10348849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic regulation of Bacillus subtilis Krebs cycle genes.
    Nakano MM; Zuber P; Sonenshein AL
    J Bacteriol; 1998 Jul; 180(13):3304-11. PubMed ID: 9642180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis.
    Fouet A; Sonenshein AL
    J Bacteriol; 1990 Feb; 172(2):835-44. PubMed ID: 2105305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bacillus subtilis malate dehydrogenase gene.
    Jin S; De Jesús-Berríos M; Sonenshein AL
    J Bacteriol; 1996 Jan; 178(2):560-3. PubMed ID: 8550482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression.
    Ohné M
    J Bacteriol; 1974 Mar; 117(3):1295-305. PubMed ID: 4205196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes.
    Kim HJ; Roux A; Sonenshein AL
    Mol Microbiol; 2002 Jul; 45(1):179-90. PubMed ID: 12100558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression.
    Craig JE; Ford MJ; Blaydon DC; Sonenshein AL
    J Bacteriol; 1997 Dec; 179(23):7351-9. PubMed ID: 9393699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis.
    Pechter KB; Meyer FM; Serio AW; Stülke J; Sonenshein AL
    J Bacteriol; 2013 Apr; 195(7):1525-37. PubMed ID: 23354745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the citrate pathway in glutamate biosynthesis by Streptococcus mutans.
    Cvitkovitch DG; Gutierrez JA; Bleiweis AS
    J Bacteriol; 1997 Feb; 179(3):650-5. PubMed ID: 9006016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.
    Wray LV; Ferson AE; Fisher SH
    J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC.
    Kim HJ; Jourlin-Castelli C; Kim SI; Sonenshein AL
    Mol Microbiol; 2002 Jan; 43(2):399-410. PubMed ID: 11985717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between aconitase gene expression and sporulation in Bacillus subtilis.
    Dingman DW; Rosenkrantz MS; Sonenshein AL
    J Bacteriol; 1987 Jul; 169(7):3068-75. PubMed ID: 3110134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
    Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J
    Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple regulatory sites in the Bacillus subtilis citB promoter region.
    Fouet A; Jin SF; Raffel G; Sonenshein AL
    J Bacteriol; 1990 Sep; 172(9):5408-15. PubMed ID: 2118511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis.
    Bryan EM; Beall BW; Moran CP
    J Bacteriol; 1996 Aug; 178(16):4778-86. PubMed ID: 8759838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.