These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8046149)

  • 21. An optical flow-based state-space model of the vocal folds.
    Granados A; Brunskog J
    J Acoust Soc Am; 2017 Jun; 141(6):EL543. PubMed ID: 28618804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chaotic vibrations of a vocal fold model with a unilateral polyp.
    Zhang Y; Jiang JJ
    J Acoust Soc Am; 2004 Mar; 115(3):1266-9. PubMed ID: 15058347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW; Fu M
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting synchronizations in an asymmetric vocal fold model from time series data.
    Tokuda I; Herzel H
    Chaos; 2005 Mar; 15(1):13702. PubMed ID: 15836270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phonation onset: vocal fold modeling and high-speed glottography.
    Mergell P; Herzel H; Wittenberg T; Tigges M; Eysholdt U
    J Acoust Soc Am; 1998 Jul; 104(1):464-70. PubMed ID: 9670538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.
    Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG
    J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal modes in a continuum model of vocal fold tissues.
    Berry DA; Titze IR
    J Acoust Soc Am; 1996 Nov; 100(5):3345-54. PubMed ID: 8914316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds.
    Neubauer J; Zhang Z; Miraghaie R; Berry DA
    J Acoust Soc Am; 2007 Feb; 121(2):1102-18. PubMed ID: 17348532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vocal fold vibration patterns and modes of phonation.
    Sundberg J
    Folia Phoniatr Logop; 1995; 47(4):218-28. PubMed ID: 7670555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A subharmonic vibratory pattern in normal vocal folds.
    Svec JG; Schutte HK; Miller DG
    J Speech Hear Res; 1996 Feb; 39(1):135-43. PubMed ID: 8820705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.
    Döllinger M; Gómez P; Patel RR; Alexiou C; Bohr C; Schützenberger A
    PLoS One; 2017; 12(11):e0187486. PubMed ID: 29121085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Material and shape optimization for multi-layered vocal fold models using transient loadings.
    Schmidt B; Leugering G; Stingl M; Hüttner B; Agaimy A; Döllinger M
    J Acoust Soc Am; 2013 Aug; 134(2):1261-70. PubMed ID: 23927124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    J Acoust Soc Am; 2013 Mar; 133(3):1625-36. PubMed ID: 23464032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.