These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 8047276)
1. Trans-(+-)-1-amino-1,3-cyclopentanedicarboxylate (trans-ACPD) stimulates cAMP accumulation in rat cerebral cortical slices but not in glial or neuronal cultures. Pilc A; Legutko B; Frankiewicz T; Czyrak A Neurosci Lett; 1994 Mar; 169(1-2):171-4. PubMed ID: 8047276 [TBL] [Abstract][Full Text] [Related]
2. The effect of interaction between (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R)-ACPD and noradrenaline on cyclic AMP accumulation: different actions in brain slices, primary glial and neuronal cell cultures. Pilc A; Legutko B; Frankiewicz T; Czyrak A Pol J Pharmacol; 1995; 47(1):75-9. PubMed ID: 7550553 [TBL] [Abstract][Full Text] [Related]
3. Endogenous adenosine regulates the apparent efficacy of 1-aminocyclopentyl-1S,3R-dicarboxylate inhibition of forskolin-stimulated cyclic AMP accumulation in rat cerebral cortical slices. Cartmell J; Kemp JA; Alexander SP; Kendall DA J Neurochem; 1993 Feb; 60(2):780-2. PubMed ID: 8380444 [TBL] [Abstract][Full Text] [Related]
4. Modulatory effects of NMDA on phosphoinositide responses evoked by the metabotropic glutamate receptor agonist 1S,3R-ACPD in neonatal rat cerebral cortex. Challiss RA; Mistry R; Gray DW; Nahorski SR Br J Pharmacol; 1994 May; 112(1):231-9. PubMed ID: 7913380 [TBL] [Abstract][Full Text] [Related]
5. Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. Winder DG; Conn PJ J Neurochem; 1992 Jul; 59(1):375-8. PubMed ID: 1351930 [TBL] [Abstract][Full Text] [Related]
6. Stimulatory effects of the putative metabotropic glutamate receptor antagonist L-AP3 on phosphoinositide turnover in neonatal rat cerebral cortex. Mistry R; Prabhu G; Godwin M; Challiss RA Br J Pharmacol; 1996 Mar; 117(6):1309-17. PubMed ID: 8882630 [TBL] [Abstract][Full Text] [Related]
7. Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain. Oka M; Itoh Y; Shimidzu T; Ukai Y; Yoshikuni Y; Kimura K Brain Res; 1997 Apr; 754(1-2):121-30. PubMed ID: 9134967 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological dissociation of glutamatergic metabotropic signal transduction pathways in cortical astrocytes. Miller S; Bridges RJ; Chamberlin AR; Cotman CW Eur J Pharmacol; 1994 Oct; 269(2):235-41. PubMed ID: 7851499 [TBL] [Abstract][Full Text] [Related]
9. Effects of a metabotropic glutamate agonist, trans-ACPD, on cortical epileptiform activity. Taschenberger H; Roy BL; Lowe DA Neuroreport; 1992 Jul; 3(7):629-32. PubMed ID: 1421121 [TBL] [Abstract][Full Text] [Related]
10. Long-lasting enhancement of metabotropic excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortex of deep prepiriform cortical kindled rats. Akiyama K; Daigen A; Yamada N; Itoh T; Kohira I; Ujike H; Otsuki S Brain Res; 1992 Jan; 569(1):71-7. PubMed ID: 1319260 [TBL] [Abstract][Full Text] [Related]
11. Modulation of cyclic AMP formation by putative metabotropic receptor agonists. Cartmell J; Kemp JA; Alexander SP; Shinozaki H; Kendall DA Br J Pharmacol; 1994 Jan; 111(1):364-9. PubMed ID: 8012720 [TBL] [Abstract][Full Text] [Related]
12. Metabotropic glutamate receptors, transmitter output and fatty acids: studies in rat brain slices. Lombardi G; Leonardi P; Moroni F Br J Pharmacol; 1996 Jan; 117(1):189-95. PubMed ID: 8825362 [TBL] [Abstract][Full Text] [Related]
13. Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid in brain slices. Casabona G; Genazzani AA; Di Stefano M; Sortino MA; Nicoletti F J Neurochem; 1992 Sep; 59(3):1161-3. PubMed ID: 1322971 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of forskolin-stimulated cyclic AMP formation by 1-aminocyclopentane-trans-1,3-dicarboxylate in guinea-pig cerebral cortical slices. Cartmell J; Kemp JA; Alexander SP; Hill SJ; Kendall DA J Neurochem; 1992 May; 58(5):1964-6. PubMed ID: 1313857 [TBL] [Abstract][Full Text] [Related]
15. Effects of t-ACPD on neural survival and second messengers in cultured cerebral cortical neurones. Thomsen C; Frandsen A; Suzdak PD; Andersen CF; Schousboe A Neuroreport; 1993 Sep; 4(11):1255-8. PubMed ID: 8219024 [TBL] [Abstract][Full Text] [Related]
16. Differences in agonist and antagonist activities for two indices of metabotropic glutamate receptor-stimulated phosphoinositide turnover. Mistry R; Challiss RA Br J Pharmacol; 1996 Apr; 117(8):1735-43. PubMed ID: 8732284 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo pharmacology of trans- and cis-(+-)-1-amino-1,3-cyclopentanedicarboxylic acid: dissociation of metabotropic and ionotropic excitatory amino acid receptor effects. Schoepp DD; Johnson BG; Salhoff CR; McDonald JW; Johnston MV J Neurochem; 1991 May; 56(5):1789-96. PubMed ID: 1849553 [TBL] [Abstract][Full Text] [Related]
18. Trans-ACPD (trans-D,L-1-amino-1,3-cyclopentanedicarboxylic acid) elicited oscillation of membrane potentials in rat dorsolateral septal nucleus neurons recorded intracellularly in vitro. Zheng F; Gallagher JP Neurosci Lett; 1991 Apr; 125(2):147-50. PubMed ID: 1881593 [TBL] [Abstract][Full Text] [Related]
19. The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures. Blaabjerg M; Kristensen BW; Bonde C; Zimmer J Brain Res; 2001 Apr; 898(1):91-104. PubMed ID: 11292452 [TBL] [Abstract][Full Text] [Related]
20. Structure-activity relationships for a series of phenylglycine derivatives acting at metabotropic glutamate receptors (mGluRs). Bedingfield JS; Kemp MC; Jane DE; Tse HW; Roberts PJ; Watkins JC Br J Pharmacol; 1995 Dec; 116(8):3323-9. PubMed ID: 8719814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]