These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 804772)
1. [Biochemistry and genetics of organic acid transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772 [No Abstract] [Full Text] [Related]
2. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii. Postma PW; van Dam K Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194 [No Abstract] [Full Text] [Related]
3. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Oldendorf WH Am J Physiol; 1973 Jun; 224(6):1450-3. PubMed ID: 4712154 [No Abstract] [Full Text] [Related]
5. [The occurrence of non-volatile organic acids in cultures of Trichophyton mentagrophytes (Robin) Blanchard. 9. Chemical and physiological--chemical studies on dermatophytes, also 31. Chemistry and physiology of metabolic chemically important acids]. Wollmann H Pharmazie; 1978 Jan; 33(1):74-8. PubMed ID: 674281 [No Abstract] [Full Text] [Related]
6. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate. Fournier RE; McKillen MN; Pardee AB; Willecke K J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722 [No Abstract] [Full Text] [Related]
7. Control of metabolite secretion in Bacillus subtilis. Speck EL; Freese E J Gen Microbiol; 1973 Oct; 78(2):261-75. PubMed ID: 4202781 [No Abstract] [Full Text] [Related]
10. Relationship between the growth rate of mycobacteria and their ability to utilize organic acids as the sole source of carbon. Tsukamura M Jpn J Microbiol; 1968 Dec; 12(4):534-6. PubMed ID: 4974281 [No Abstract] [Full Text] [Related]
12. The metabolic significance of anion transport in mitochondria. Meijer AJ; Van Dam K Biochim Biophys Acta; 1974 Dec; 346(3-4):213-44. PubMed ID: 4613381 [No Abstract] [Full Text] [Related]
13. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12. Kay WW Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902 [No Abstract] [Full Text] [Related]
14. [Substrate permeation into mitochondria with special attention to the permeation of pyruvate]. Klingenberg M Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):275-7. PubMed ID: 5420684 [No Abstract] [Full Text] [Related]
15. The utilization of magnesium by certain Gram-positive and Gram-negative bacteria. Webb M J Gen Microbiol; 1966 Jun; 43(3):401-9. PubMed ID: 4960404 [No Abstract] [Full Text] [Related]
16. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate]. Hatchikian EC; Le Gall J Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009 [No Abstract] [Full Text] [Related]
17. Asymmetric RNA synthesis in vitro: heterologous DNA-enzyme systems; E. coli RNA polymerase. Colvill AJ; Kanner LC; Tocchini-Valentini GP; Sarnat MT; Geiduschek EP Proc Natl Acad Sci U S A; 1965 May; 53(5):1140-7. PubMed ID: 4958034 [No Abstract] [Full Text] [Related]
18. Production of volatile materials in milk by some species of bacteria. Bassette R; Bawdon RE; Claydon TJ J Dairy Sci; 1967 Feb; 50(2):167-71. PubMed ID: 4962020 [No Abstract] [Full Text] [Related]
19. [Dissolution of gold by microorganisms and the products of their metabolism]. Korobushkina ED; Cherniak AS; Mineev GG Mikrobiologiia; 1974; 43(1):49-54. PubMed ID: 4210177 [No Abstract] [Full Text] [Related]
20. [Growth of Azotobacter chroococcum strains on different substrates]. Goncharova LF; Disler EN; Bezborodov AM Mikrobiologiia; 1975; 44(1):86-90. PubMed ID: 1160641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]