These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 804851)

  • 1. Transformation of elemental mercury by bacteria.
    Holm HW; Cox MF
    Appl Microbiol; 1975 Apr; 29(4):491-4. PubMed ID: 804851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi.
    Vonk JW; Sijpesteijn AK
    Antonie Van Leeuwenhoek; 1973; 39(3):505-13. PubMed ID: 4201588
    [No Abstract]   [Full Text] [Related]  

  • 3. Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria.
    Halvorson H
    Can J Microbiol; 1972 Nov; 18(11):1647-50. PubMed ID: 4628671
    [No Abstract]   [Full Text] [Related]  

  • 4. Cytochrome c involved in the reductive decomposition of organic mercurials. Purification of cytochrome c-I from mercury-resistant Pseudomonas and reactivity of cytochromes c from various kinds of bacteria.
    Furukawa K; Tonomura K
    Biochim Biophys Acta; 1973 Dec; 325(3):413-23. PubMed ID: 4360253
    [No Abstract]   [Full Text] [Related]  

  • 5. Bacterial oxidation of orthophosphate.
    Malacinski G; Konetzka WA
    J Bacteriol; 1966 Feb; 91(2):578-82. PubMed ID: 4956755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic difference in the methylation of ribosomal ribonucleic acid from gram-positive and gram-negative bacteria.
    Tanaka T; Weisblum B
    J Bacteriol; 1975 Aug; 123(2):771-4. PubMed ID: 807565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria.
    Stotzky G; Rem LT
    Can J Microbiol; 1966 Jun; 12(3):547-63. PubMed ID: 4289932
    [No Abstract]   [Full Text] [Related]  

  • 8. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
    Summers AO; Lewis E
    J Bacteriol; 1973 Feb; 113(2):1070-2. PubMed ID: 4632313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The action of lysozyme on bacterial electron transport systems.
    Shah SB; King HK
    J Gen Microbiol; 1966 Jul; 44(1):1-13. PubMed ID: 4290564
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein synthesis at 680 atm: is it related to environmental origin, physiological type, or taxonomic group?
    Pope DH; Smith WP; Orgrinic MA; Landau JV
    Appl Environ Microbiol; 1976 Jun; 31(6):1001-2. PubMed ID: 820255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens.
    Belzile N; Wu GJ; Chen YW; Appanna VD
    Sci Total Environ; 2006 Aug; 367(2-3):704-14. PubMed ID: 16626785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of diverse heterotrophic bacteria to elevated copper concentrations.
    Gordon AS; Howell LD; Harwood V
    Can J Microbiol; 1994 May; 40(5):408-11. PubMed ID: 8069784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microbial life stages on the fate of methylmercury in natural waters.
    Ramamoorthy S; Cheng TC; Kushner DJ
    Bull Environ Contam Toxicol; 1982 Aug; 29(2):167-73. PubMed ID: 6812668
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of porphyrin and heme biosynthesis in various heterotrophic bacteria.
    Philipp-Dormston WK; Doss M
    Enzyme; 1973; 16(1):57-64. PubMed ID: 4208581
    [No Abstract]   [Full Text] [Related]  

  • 16. Asymmetric RNA synthesis in vitro: heterologous DNA-enzyme systems; E. coli RNA polymerase.
    Colvill AJ; Kanner LC; Tocchini-Valentini GP; Sarnat MT; Geiduschek EP
    Proc Natl Acad Sci U S A; 1965 May; 53(5):1140-7. PubMed ID: 4958034
    [No Abstract]   [Full Text] [Related]  

  • 17. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).
    Figueiredo NL; Canário J; O'Driscoll NJ; Duarte A; Carvalho C
    Ecotoxicol Environ Saf; 2016 Feb; 124():60-67. PubMed ID: 26461264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiological activity of mixed cultures of Methylcoccus capsulatus UKM B-3030 with Bacillus megaterium UKM B-5723T and Bacillus subtilis VKPM B-1489 on solid surface colonization].
    Kisten' AG; Roĭ AA; Kurdish IK
    Mikrobiol Z; 2002; 64(6):73-9. PubMed ID: 12664554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dense growth of aerobic bacteria in a bench-scale fermentor.
    Bauer S; Ziv E
    Biotechnol Bioeng; 1976 Jan; 18(1):81-94. PubMed ID: 813791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb).
    Braud A; Jézéquel K; Léger MA; Lebeau T
    Biotechnol Bioeng; 2006 Aug; 94(6):1080-8. PubMed ID: 16586510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.