BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8048534)

  • 1. Protein-mediated transfer of fluorescent-labeled phospholipids across brush border of rabbit intestine.
    Zhang Z; Nichols JW
    Am J Physiol; 1994 Jul; 267(1 Pt 1):G80-6. PubMed ID: 8048534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids.
    Angeletti C; Nichols JW
    Biochemistry; 1998 Oct; 37(43):15114-9. PubMed ID: 9790674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid asymmetry in rabbit small intestinal brush border membrane as probed by an intrinsic phospholipid exchange protein.
    Lipka G; Op den Kamp JA; Hauser H
    Biochemistry; 1991 Dec; 30(51):11828-36. PubMed ID: 1751499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid topology and flip-flop in intestinal brush-border membrane.
    Barsukov LI; Bergelson LD; Spiess M; Hauser H; Semenza G
    Biochim Biophys Acta; 1986 Nov; 862(1):87-99. PubMed ID: 3768371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of histidine residues and sulfhydryl groups in the function of the biotin transport carrier of rabbit intestinal brush-border membrane.
    Said HM; Mohammadkhani R
    Biochim Biophys Acta; 1992 Jun; 1107(2):238-44. PubMed ID: 1504068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes.
    Chattopadhyay A
    Chem Phys Lipids; 1990 Mar; 53(1):1-15. PubMed ID: 2191793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption of monoacylglycerols by small intestinal brush border membrane.
    Schulthess G; Lipka G; Compassi S; Boffelli D; Weber FE; Paltauf F; Hauser H
    Biochemistry; 1994 Apr; 33(15):4500-8. PubMed ID: 8161504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier-mediated mechanism for biotin transport in rabbit intestine: studies with brush-border membrane vesicles.
    Said HM; Derweesh I
    Am J Physiol; 1991 Jul; 261(1 Pt 2):R94-7. PubMed ID: 1858960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: role of histidine residues.
    Kato M; Maegawa H; Okano T; Inui K; Hori R
    J Pharmacol Exp Ther; 1989 Nov; 251(2):745-9. PubMed ID: 2810124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral absorption of anti-acquired immune deficiency syndrome nucleoside analogues. 2. Carrier-mediated intestinal transport of stavudine in rat and rabbit preparations.
    Waclawski AP; Sinko PJ
    J Pharm Sci; 1996 May; 85(5):478-85. PubMed ID: 8742938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of divalent transition-metal ions is lost in small-intestinal tissue of b/b Belgrade rats.
    Knöpfel M; Zhao L; Garrick MD
    Biochemistry; 2005 Mar; 44(9):3454-65. PubMed ID: 15736955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship of membrane fluidity to calcium flux in chick intestinal brush border membranes.
    Bikle DD; Whitney J; Munson S
    Endocrinology; 1984 Jan; 114(1):260-7. PubMed ID: 6546306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of micellar lipids on rabbit intestinal brush-border membrane phospholipid bilayer integrity studied by 31P NMR.
    Vallet-Strouve C; Tellier C; Poignant S; Boucrot P
    J Membr Biol; 1985; 84(1):73-9. PubMed ID: 3999126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation.
    Matsuzaki K; Murase O; Fujii N; Miyajima K
    Biochemistry; 1996 Sep; 35(35):11361-8. PubMed ID: 8784191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroid hormones increase Na+-Pi co-transport activity in intestinal brush border membrane: role of membrane lipid composition and fluidity.
    Prasad R; Kumar V
    Mol Cell Biochem; 2005 Oct; 278(1-2):195-202. PubMed ID: 16180105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folate transport by human intestinal brush-border membrane vesicles.
    Said HM; Ghishan FK; Redha R
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G229-36. PubMed ID: 3826350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach.
    Marx U; Lassmann G; Holzhütter HG; Wüstner D; Müller P; Höhlig A; Kubelt J; Herrmann A
    Biophys J; 2000 May; 78(5):2628-40. PubMed ID: 10777759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of cyanine dye binding to brush-border membranes by quenching of n-(9-anthroyloxy) fatty acid probes.
    Cabrini G; Verkman AS
    Biochim Biophys Acta; 1986 Nov; 862(2):285-93. PubMed ID: 3778893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane.
    Boffelli D; Weber FE; Compassi S; Werder M; Schulthess G; Hauser H
    Biochemistry; 1997 Sep; 36(35):10784-92. PubMed ID: 9271510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.