These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8049222)

  • 41. Effect of nucleotides on thermal stability of ferricytochrome C.
    Antalík M; Bágel'ová J
    Gen Physiol Biophys; 1995 Feb; 14(1):19-37. PubMed ID: 8529863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein.
    Murphy ME; Nall BT; Brayer GD
    J Mol Biol; 1992 Sep; 227(1):160-76. PubMed ID: 1326054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytochrome c folds through a smooth funnel.
    Panda M; Benavides-Garcia MG; Pierce MM; Nall BT
    Protein Sci; 2000 Mar; 9(3):536-43. PubMed ID: 10752615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution structure, hydrodynamics and thermodynamics of the UvrB C-terminal domain.
    Alexandrovich A; Czisch M; Frenkiel TA; Kelly GP; Goosen N; Moolenaar GF; Chowdhry BZ; Sanderson MR; Lane AN
    J Biomol Struct Dyn; 2001 Oct; 19(2):219-36. PubMed ID: 11697728
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal unfolding and aggregation of human complement protein C9: a differential scanning calorimetry study.
    Lohner K; Esser AF
    Biochemistry; 1991 Jul; 30(26):6620-5. PubMed ID: 2054360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding of yeast iso-1-AM cytochrome c.
    Zuniga EH; Nall BT
    Biochemistry; 1983 Mar; 22(6):1430-7. PubMed ID: 6301549
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the structure and stability of omega loop A replacements in yeast iso-1-cytochrome c.
    Fetrow JS; Horner SR; Oehrl W; Schaak DL; Boose TL; Burton RE
    Protein Sci; 1997 Jan; 6(1):197-210. PubMed ID: 9007992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c.
    Wood LC; White TB; Ramdas L; Nall BT
    Biochemistry; 1988 Nov; 27(23):8562-8. PubMed ID: 2851328
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Communication of stabilizing energy between substructures of a protein.
    Kristinsson R; Bowler BE
    Biochemistry; 2005 Feb; 44(7):2349-59. PubMed ID: 15709747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling.
    Melien R; Garidel P; Hinderberger D; Blech M
    Pharm Res; 2020 Apr; 37(4):78. PubMed ID: 32236701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c.
    Hampsey DM; Das G; Sherman F
    J Biol Chem; 1986 Mar; 261(7):3259-71. PubMed ID: 3005287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of yeast cytochromes c dependent and independent on its physiological partners.
    Pearce DA; Sherman F
    Arch Biochem Biophys; 1998 Apr; 352(1):85-96. PubMed ID: 9521820
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Domain structure and interactions of the type I and type II modules in the gelatin-binding region of fibronectin. All six modules are independently folded.
    Litvinovich SV; Strickland DK; Medved LV; Ingham KC
    J Mol Biol; 1991 Feb; 217(3):563-75. PubMed ID: 1994038
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ubiquitin conjugation to cytochromes c. Structure of the yeast iso-1 conjugate and possible recognition determinants.
    Sokolik CW; Cohen RE
    J Biol Chem; 1992 Jan; 267(2):1067-71. PubMed ID: 1309759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural stability and unfolding transition of β-glucosidases: a comparative investigation on isozymes from a thermo-tolerant yeast.
    Shah MA; Mishra S; Chaudhuri TK
    Eur Biophys J; 2011 Jul; 40(7):877-89. PubMed ID: 21538058
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G.
    Alexander P; Orban J; Bryan P
    Biochemistry; 1992 Aug; 31(32):7243-8. PubMed ID: 1510916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Slow refolding kinetics in yeast iso-2 cytochrome c.
    Osterhout JJ; Nall BT
    Biochemistry; 1985 Dec; 24(27):7999-8005. PubMed ID: 3004570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH dependence thermal stability of a chymotrypsin inhibitor from Schizolobium parahyba seeds.
    Teles RC; Calderon Lde A; Medrano FJ; Barbosa JA; Guimarães BG; Santoro MM; de Freitas SM
    Biophys J; 2005 May; 88(5):3509-17. PubMed ID: 15764660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase.
    Galisteo ML; Mateo PL; Sanchez-Ruiz JM
    Biochemistry; 1991 Feb; 30(8):2061-6. PubMed ID: 1998668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.