BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8049235)

  • 21. Expression, purification and the 1.8 angstroms resolution crystal structure of human neuron specific enolase.
    Chai G; Brewer JM; Lovelace LL; Aoki T; Minor W; Lebioda L
    J Mol Biol; 2004 Aug; 341(4):1015-21. PubMed ID: 15289101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution.
    Kostrewa D; Winkler FK
    Biochemistry; 1995 Jan; 34(2):683-96. PubMed ID: 7819264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4.
    Lee H; Reyes VM; Kraut J
    Biochemistry; 1996 Jun; 35(22):7012-20. PubMed ID: 8679526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering the enolase magnesium II binding site: implications for its evolution.
    Schreier B; Höcker B
    Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation by site-directed mutagenesis and characterization of the E211Q mutant of yeast enolase 1.
    Sangadala VS; Glover CV; Robson RL; Holland MJ; Lebioda L; Brewer JM
    Biochim Biophys Acta; 1995 Aug; 1251(1):23-31. PubMed ID: 7647089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties.
    Brewer JM; Glover CV; Holland MJ; Lebioda L
    Biochim Biophys Acta; 1997 Jun; 1340(1):88-96. PubMed ID: 9217018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallographic study of azurin from Pseudomonas putida.
    Chen ZW; Barber MJ; McIntire WS; Mathews FS
    Acta Crystallogr D Biol Crystallogr; 1998 Mar; 54(Pt 2):253-68. PubMed ID: 9761890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by x-ray crystallography.
    Kim H; Lipscomb WN
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5006-10. PubMed ID: 8506345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme.
    Poyner RR; Cleland WW; Reed GH
    Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of enzymatic activities in the enolase superfamily: D-Mannonate dehydratase from Novosphingobium aromaticivorans.
    Rakus JF; Fedorov AA; Fedorov EV; Glasner ME; Vick JE; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2007 Nov; 46(45):12896-908. PubMed ID: 17944491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 25Mg NMR studies of yeast enolase and rabbit muscle pyruvate kinase.
    Lee ME; Nowak T
    Arch Biochem Biophys; 1992 Mar; 293(2):264-73. PubMed ID: 1311162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants.
    Poyner RR; Laughlin LT; Sowa GA; Reed GH
    Biochemistry; 1996 Feb; 35(5):1692-9. PubMed ID: 8634301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction intermediate analogues for enolase.
    Anderson VE; Weiss PM; Cleland WW
    Biochemistry; 1984 Jun; 23(12):2779-86. PubMed ID: 6380574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of bovine trypsinogen at 1.9 A resolution.
    Kossiakoff AA; Chambers JL; Kay LM; Stroud RM
    Biochemistry; 1977 Feb; 16(4):654-64. PubMed ID: 556951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can monomers of yeast enolase have enzymatic activity?
    Kornblatt MJ; Lange R; Balny C
    Eur J Biochem; 1998 Feb; 251(3):775-80. PubMed ID: 9490051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg(2+)-F(-)-Pi complex at 2.6 A resolution.
    Lebioda L; Zhang E; Lewinski K; Brewer JM
    Proteins; 1993 Jul; 16(3):219-25. PubMed ID: 8346189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnesium ion requirements for yeast enolase activity.
    Faller LD; Baroudy BM; Johnson AM; Ewall RX
    Biochemistry; 1977 Aug; 16(17):3864-9. PubMed ID: 332224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies of activating and nonactivating metal ion binding to yeast enolase.
    Brewer JM; Carreira LA; Collins KM; Duvall MC; Cohen C; DerVartanian DV
    J Inorg Biochem; 1983 Nov; 19(3):255-67. PubMed ID: 6358410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and mechanistic studies of enolase.
    Reed GH; Poyner RR; Larsen TM; Wedekind JE; Rayment I
    Curr Opin Struct Biol; 1996 Dec; 6(6):736-43. PubMed ID: 8994873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.