BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8049236)

  • 1. Substrate-dependent mechanisms in the catalysis of human immunodeficiency virus protease.
    Polgár L; Szeltner Z; Boros I
    Biochemistry; 1994 Aug; 33(31):9351-7. PubMed ID: 8049236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate-determining steps in HIV-1 protease catalysis. The hydrolysis of the most specific substrate.
    Szeltner Z; Polgár L
    J Biol Chem; 1996 Dec; 271(50):32180-4. PubMed ID: 8943273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism.
    Hyland LJ; Tomaszek TA; Meek TD
    Biochemistry; 1991 Aug; 30(34):8454-63. PubMed ID: 1883831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic*hydrophobic- or -aromatic*pro- cleavage sites.
    Griffiths JT; Phylip LH; Konvalinka J; Strop P; Gustchina A; Wlodawer A; Davenport RJ; Briggs R; Dunn BM; Kay J
    Biochemistry; 1992 Jun; 31(22):5193-200. PubMed ID: 1606143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of substrate residues on the P2' preference of retroviral proteinases.
    Boross P; Bagossi P; Copeland TD; Oroszlan S; Louis JM; Tözsér J
    Eur J Biochem; 1999 Sep; 264(3):921-9. PubMed ID: 10491141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis of an active site peptide of lactate dehydrogenase by human immunodeficiency virus type 1 protease.
    Tomaszek TA; Moore ML; Strickler JE; Sanchez RL; Dixon JS; Metcalf BW; Hassell A; Dreyer GB; Brooks I; Debouck C
    Biochemistry; 1992 Oct; 31(42):10153-68. PubMed ID: 1420138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies on the human matrix metalloproteinase stromelysin.
    Harrison RK; Chang B; Niedzwiecki L; Stein RL
    Biochemistry; 1992 Nov; 31(44):10757-62. PubMed ID: 1420192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of tethered human immunodeficiency virus 1 protease containing mutations in the flap region of one subunit.
    Tözsér J; Yin FH; Cheng YS; Bagossi P; Weber IT; Harrison RW; Oroszlan S
    Eur J Biochem; 1997 Feb; 244(1):235-41. PubMed ID: 9063469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of glutaminyl cyclases from plants and animals.
    Schilling S; Manhart S; Hoffmann T; Ludwig HH; Wasternack C; Demuth HU
    Biol Chem; 2003 Dec; 384(12):1583-92. PubMed ID: 14719800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange.
    Hyland LJ; Tomaszek TA; Roberts GD; Carr SA; Magaard VW; Bryan HL; Fakhoury SA; Moore ML; Minnich MD; Culp JS
    Biochemistry; 1991 Aug; 30(34):8441-53. PubMed ID: 1883830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual secondary specificity of prolyl oligopeptidase and the different reactivities of its two forms toward charged substrates.
    Polgár L
    Biochemistry; 1992 Aug; 31(33):7729-35. PubMed ID: 1510958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational stability and catalytic activity of HIV-1 protease are both enhanced at high salt concentration.
    Szeltner Z; Polgár L
    J Biol Chem; 1996 Mar; 271(10):5458-63. PubMed ID: 8621402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and mechanistic studies of penicillin-binding protein 2x from Streptococcus pneumoniae.
    Thomas B; Wang Y; Stein RL
    Biochemistry; 2001 Dec; 40(51):15811-23. PubMed ID: 11747459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive, soluble chromogenic substrates for HIV-1 proteinase.
    Richards AD; Phylip LH; Farmerie WG; Scarborough PE; Alvarez A; Dunn BM; Hirel PH; Konvalinka J; Strop P; Pavlickova L
    J Biol Chem; 1990 May; 265(14):7733-6. PubMed ID: 2186027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitutions at the P2' site of gag p17-p24 affect cleavage efficiency by HIV-1 protease.
    Margolin N; Heath W; Osborne E; Lai M; Vlahos C
    Biochem Biophys Res Commun; 1990 Mar; 167(2):554-60. PubMed ID: 2182016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on thrombin catalysis.
    Stone SR; Betz A; Hofsteenge J
    Biochemistry; 1991 Oct; 30(41):9841-8. PubMed ID: 1911776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.