BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 8049245)

  • 1. Tryptic cleavage of gastric lipases: location of the single disulfide bridge.
    Aoubala M; Bonicel J; Bénicourt C; Verger R; De Caro A
    Biochim Biophys Acta; 1994 Aug; 1213(3):319-24. PubMed ID: 8049245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzymatically active truncated form (-55 N-terminal residues) of rabbit gastric lipase. Correlation between the enzymatic activity and disulfide bond oxydo-reduction state.
    De Caro J; Verger R; De Caro A
    Biochim Biophys Acta; 1998 Jul; 1386(1):39-49. PubMed ID: 9675239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions.
    Bengtsson-Olivecrona G; Olivecrona T; Jörnvall H
    Eur J Biochem; 1986 Dec; 161(2):281-8. PubMed ID: 3536511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of sulfhydryl group for rabbit gastric lipase activity.
    Moreau H; Gargouri Y; Pieroni G; Verger R
    FEBS Lett; 1988 Aug; 236(2):383-7. PubMed ID: 3410049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a sulfhydryl group in gastric lipases. A binding study using the monomolecular-film technique.
    Gargouri Y; Moreau H; Pieroni G; Verger R
    Eur J Biochem; 1989 Mar; 180(2):367-71. PubMed ID: 2924771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porcine pancreatic lipase. The disulfide bridges and the sulfhydryl groups.
    Benkouka F; Guidoni AA; De Caro JD; Bonicel JJ; Desnuelle PA; Rovery M
    Eur J Biochem; 1982 Nov; 128(2-3):331-41. PubMed ID: 7151781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological and biochemical characterization of processing products from the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6-23 cell line.
    Bidard JN; de Nadai F; Rovere C; Moinier D; Laur J; Martinez J; Cuber JC; Kitabgi P
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):225-33. PubMed ID: 8471039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropomyosin fragments obtained by tryptic digestion.
    Ueno H; Ooi T
    J Biochem; 1978 May; 83(5):1423-33. PubMed ID: 659405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identification of disulfides in ricin D using proteolytic cleavage followed by negative-ion nano-electrospray ionization mass spectrometry of the peptide fragments.
    Tran TT; Brinkworth CS; Bowie JH
    Rapid Commun Mass Spectrom; 2015 Jan; 29(2):182-90. PubMed ID: 25641493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid sequence of an active fragment of potato proteinase inhibitor IIa.
    Iwasaki T; Kiyohara T; Yoshikawa M
    J Biochem; 1976 Feb; 79(2):381-91. PubMed ID: 1270410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide structure of the heparin binding domain in vascular endothelial growth factor: characterization of posttranslational modifications in VEGF.
    Keck RG; Berleau L; Harris R; Keyt BA
    Arch Biochem Biophys; 1997 Aug; 344(1):103-13. PubMed ID: 9244387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digestive lipases: from three-dimensional structure to physiology.
    Miled N; Canaan S; Dupuis L; Roussel A; Rivière M; Carrière F; de Caro A; Cambillau C; Verger R
    Biochimie; 2000 Nov; 82(11):973-86. PubMed ID: 11099794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.
    Manea M; Mezo G; Hudecz F; Przybylski M
    J Pept Sci; 2007 Apr; 13(4):227-36. PubMed ID: 17394121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100.
    Yang CY; Kim TW; Weng SA; Lee BR; Yang ML; Gotto AM
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5523-7. PubMed ID: 2115173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digestion of troponin C with trypsin in the presence and absence of Ca2+. Identification of cleavage points.
    Grabarek Z; Drabikowski W; Vinokurov L; Lu RC
    Biochim Biophys Acta; 1981 Dec; 671(2):227-33. PubMed ID: 7326266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human lysosomal acid lipase/cholesteryl ester hydrolase and human gastric lipase: identification of the catalytically active serine, aspartic acid, and histidine residues.
    Lohse P; Chahrokh-Zadeh S; Lohse P; Seidel D
    J Lipid Res; 1997 May; 38(5):892-903. PubMed ID: 9186907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of lipases for in vitro models of gastric digestion: lipolysis using two infant formulas as model substrates.
    Sassene PJ; Fanø M; Mu H; Rades T; Aquistapace S; Schmitt B; Cruz-Hernandez C; Wooster TJ; Müllertz A
    Food Funct; 2016 Sep; 7(9):3989-3998. PubMed ID: 27711870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoaffinity labeling of homologous Met-133 and Met-139 amino acids of rabbit and sheep sex hormone-binding globulins with the unsubstituted Delta 6-testosterone photoreagent.
    Kassab D; Pichat S; Chambon C; Blachère T; Rolland de Ravel M; Mappus E; Grenot C; Cuilleron CY
    Biochemistry; 1998 Oct; 37(40):14088-97. PubMed ID: 9760244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme.
    Noda Y; Fujiwara K; Yamamoto K; Fukuno T; Segawa S
    Biopolymers; 1994 Feb; 34(2):217-26. PubMed ID: 8142590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cysteine residues of recombinant human gastric lipase.
    Canaan S; Rivière M; Verger R; Dupuis L
    Biochem Biophys Res Commun; 1999 Apr; 257(3):851-4. PubMed ID: 10208872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.