BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8049469)

  • 1. A dual requirement for neurogenic genes in Drosophila myogenesis.
    Bate M; Rushton E; Frasch M
    Dev Suppl; 1993; ():149-61. PubMed ID: 8049469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenesis and muscle patterning in Drosophila.
    Bate M; Rushton E
    C R Acad Sci III; 1993 Sep; 316(9):1047-61. PubMed ID: 8076205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of circular and longitudinal muscles in Drosophila is independent of the endoderm but further visceral muscle differentiation requires a close contact between mesoderm and endoderm.
    Wolfstetter G; Shirinian M; Stute C; Grabbe C; Hummel T; Baumgartner S; Palmer RH; Holz A
    Mech Dev; 2009; 126(8-9):721-36. PubMed ID: 19463947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different levels, but not different isoforms, of the Drosophila transcription factor DMEF2 affect distinct aspects of muscle differentiation.
    Gunthorpe D; Beatty KE; Taylor MV
    Dev Biol; 1999 Nov; 215(1):130-45. PubMed ID: 10525355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila.
    Ranganayakulu G; Zhao B; Dokidis A; Molkentin JD; Olson EN; Schulz RA
    Dev Biol; 1995 Sep; 171(1):169-81. PubMed ID: 7556894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the Drosophila beta3-tubulin gene demonstrates that the microtubule cytoskeleton in the cells of the visceral mesoderm is required for morphogenesis of the midgut endoderm.
    Dettman RW; Turner FR; Raff EC
    Dev Biol; 1996 Jul; 177(1):117-35. PubMed ID: 8660882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic expression of MEF2 in the epidermis induces epidermal expression of muscle genes and abnormal muscle development in Drosophila.
    Lin MH; Bour BA; Abmayr SM; Storti RV
    Dev Biol; 1997 Feb; 182(2):240-55. PubMed ID: 9070325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins.
    Lin SC; Storti RV
    Dev Genet; 1997; 20(4):297-306. PubMed ID: 9254904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell culture of individual Drosophila embryos. II. Culture of X-linked embryonic lethals.
    Cross DP; Sang JH
    J Embryol Exp Morphol; 1978 Jun; 45():173-87. PubMed ID: 97357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes required for Drosophila nervous system development identified by RNA interference.
    Ivanov AI; Rovescalli AC; Pozzi P; Yoo S; Mozer B; Li HP; Yu SH; Higashida H; Guo V; Spencer M; Nirenberg M
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16216-21. PubMed ID: 15534205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hox genes regulate muscle founder cell pattern autonomously and regulate morphogenesis through motor neurons.
    Dutta D; Umashankar M; Lewis EB; Rodrigues V; Vijayraghavan K
    J Neurogenet; 2010 Sep; 24(3):95-108. PubMed ID: 20615088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for the Drosophila COE transcription factor Collier in formation of an embryonic muscle: transcriptional response to notch signalling.
    Crozatier M; Vincent A
    Development; 1999 Apr; 126(7):1495-504. PubMed ID: 10068642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis.
    Carmena A; Bate M; Jiménez F
    Genes Dev; 1995 Oct; 9(19):2373-83. PubMed ID: 7557389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Despite expression in embryonic visceral mesoderm, H2.0 is not essential for Drosophila visceral muscle morphogenesis.
    Barad M; Erlebacher A; McGinnis W
    Dev Genet; 1991; 12(3):206-11. PubMed ID: 1678322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mesodermal expression of rolling stone (rost) is essential for myoblast fusion in Drosophila and encodes a potential transmembrane protein.
    Paululat A; Goubeaud A; Damm C; Knirr S; Burchard S; Renkawitz-Pohl R
    J Cell Biol; 1997 Jul; 138(2):337-48. PubMed ID: 9230076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila.
    Paululat A; Burchard S; Renkawitz-Pohl R
    Development; 1995 Aug; 121(8):2611-20. PubMed ID: 7671823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. wingless is required for the formation of a subset of muscle founder cells during Drosophila embryogenesis.
    Baylies MK; Martinez Arias A; Bate M
    Development; 1995 Nov; 121(11):3829-37. PubMed ID: 8582292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ladybird determines cell fate decisions during diversification of Drosophila somatic muscles.
    Jagla T; Bellard F; Lutz Y; Dretzen G; Bellard M; Jagla K
    Development; 1998 Sep; 125(18):3699-708. PubMed ID: 9716535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of muscle types in Drosophila: upstream and downstream of identity genes.
    de Joussineau C; Bataillé L; Jagla T; Jagla K
    Curr Top Dev Biol; 2012; 98():277-301. PubMed ID: 22305167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the NK-homeobox gene slouch (S59) in somatic muscle patterning.
    Knirr S; Azpiazu N; Frasch M
    Development; 1999 Oct; 126(20):4525-35. PubMed ID: 10498687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.