These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8050474)
21. Regulation of Ca2+-sensitive adenylyl cyclase in gonadotropin-releasing hormone neurons. Krsmanovic LZ; Mores N; Navarro CE; Tomić M; Catt KJ Mol Endocrinol; 2001 Mar; 15(3):429-40. PubMed ID: 11222744 [TBL] [Abstract][Full Text] [Related]
22. Sodium cyanide increases cytosolic free calcium: evidence for activation of the reversed mode of the Na+/Ca2+ exchanger and Ca2+ mobilization from inositol trisphosphate-insensitive pools. Kiang JG; Smallridge RC Toxicol Appl Pharmacol; 1994 Aug; 127(2):173-81. PubMed ID: 7519371 [TBL] [Abstract][Full Text] [Related]
23. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. Lieberherr M; Grosse B J Biol Chem; 1994 Mar; 269(10):7217-23. PubMed ID: 8125934 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of basal and corticotropin-releasing hormone-stimulated adenylate cyclase activity and cytosolic Ca2+ levels by somatostatin in human corticotropin-secreting pituitary adenomas. Spada A; Reza-Elahi F; Lania A; Bassetti M; Atti E J Clin Endocrinol Metab; 1990 May; 70(5):1262-8. PubMed ID: 1970828 [TBL] [Abstract][Full Text] [Related]
25. Effects of parathyroid hormone on cytosolic calcium of rat adipocytes. Ni Z; Smogorzewski M; Massry SG Endocrinology; 1994 Nov; 135(5):1837-44. PubMed ID: 7525254 [TBL] [Abstract][Full Text] [Related]
26. Signaling properties of mouse and human corticotropin-releasing factor (CRF) receptors: decreased coupling efficiency of human type II CRF receptor. Xiong Y; Xie LY; Abou-Samra AB Endocrinology; 1995 May; 136(5):1828-34. PubMed ID: 7720627 [TBL] [Abstract][Full Text] [Related]
27. Coupling of an endogenous 5-HT1B-like receptor to increases in intracellular calcium through a pertussis toxin-sensitive mechanism in CHO-K1 cells. Dickenson JM; Hill SJ Br J Pharmacol; 1995 Dec; 116(7):2889-96. PubMed ID: 8680721 [TBL] [Abstract][Full Text] [Related]
28. Corticotropin releasing factor-induced ERK phosphorylation in AtT20 cells occurs via a cAMP-dependent mechanism requiring EPAC2. Van Kolen K; Dautzenberg FM; Verstraeten K; Royaux I; De Hoogt R; Gutknecht E; Peeters PJ Neuropharmacology; 2010 Jan; 58(1):135-44. PubMed ID: 19573542 [TBL] [Abstract][Full Text] [Related]
29. Characterization of neuropeptide Y-mediated corticotropin-releasing factor synthesis and release from human placental trophoblasts. Robidoux J; Simoneau L; St-Pierre S; Masse A; Lafond J Endocrinology; 2000 Aug; 141(8):2795-804. PubMed ID: 10919265 [TBL] [Abstract][Full Text] [Related]
30. Heat shock increases cytosolic free Ca2+ concentration via Na(+)-Ca2+ exchange in human epidermoid A 431 cells. Kiang JG; Koenig ML; Smallridge RC Am J Physiol; 1992 Jul; 263(1 Pt 1):C30-8. PubMed ID: 1636682 [TBL] [Abstract][Full Text] [Related]
31. Calcium-dependent control of corticotropin release in rat anterior pituitary cell cultures. Abou-Samra AB; Catt KJ; Aguilera G Endocrinology; 1987 Sep; 121(3):965-71. PubMed ID: 2441983 [TBL] [Abstract][Full Text] [Related]
32. Voltage-gated Ca2+ channels and intracellular Ca2+ release regulate exocytosis in identified rat corticotrophs. Tse A; Lee AK J Physiol; 2000 Oct; 528 Pt 1(Pt 1):79-90. PubMed ID: 11018107 [TBL] [Abstract][Full Text] [Related]
33. Divalent cations suppress 3',5'-adenosine monophosphate accumulation by stimulating a pertussis toxin-sensitive guanine nucleotide-binding protein in cultured bovine parathyroid cells. Chen CJ; Barnett JV; Congo DA; Brown EM Endocrinology; 1989 Jan; 124(1):233-9. PubMed ID: 2462488 [TBL] [Abstract][Full Text] [Related]
34. ATP-induced Ca2+ influx is regulated via a pertussis toxin-sensitive mechanism in a PC12 cell clone. Clementi E; Scheer H; Raichman M; Meldolesi J Biochem Biophys Res Commun; 1992 Nov; 188(3):1184-90. PubMed ID: 1280132 [TBL] [Abstract][Full Text] [Related]
35. Control of Ca2+ entry into rat lactotrophs by thyrotrophin-releasing hormone. Carew MA; Mason WT J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):349-60. PubMed ID: 7473202 [TBL] [Abstract][Full Text] [Related]
36. Effects of adenosine on cAMP production and cytosolic Ca2+ in cultured rabbit medullary thick limb cells. Burnatowska-Hledin MA; Spielman WS Am J Physiol; 1991 Jan; 260(1 Pt 1):C143-50. PubMed ID: 1846267 [TBL] [Abstract][Full Text] [Related]
37. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Kuryshev YA; Childs GV; Ritchie AK Endocrinology; 1996 Jun; 137(6):2269-77. PubMed ID: 8641175 [TBL] [Abstract][Full Text] [Related]
38. Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway. Chin TY; Chueh SH Am J Physiol; 1998 Nov; 275(5):C1255-63. PubMed ID: 9814974 [TBL] [Abstract][Full Text] [Related]
39. Corticotropin-releasing factor increases dihydropyridine- and neurotoxin-resistant calcium currents in neurons of the central amygdala. Yu B; Shinnick-Gallagher P J Pharmacol Exp Ther; 1998 Jan; 284(1):170-9. PubMed ID: 9435175 [TBL] [Abstract][Full Text] [Related]
40. Corticotropin-releasing factor modulation of Ca2+ influx in rat pancreatic beta-cells. Kanno T; Suga S; Nakano K; Kamimura N; Wakui M Diabetes; 1999 Sep; 48(9):1741-6. PubMed ID: 10480603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]