These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 8050718)

  • 21. Production of gibberellic acid by Aspergillus niger using some food industry wastes.
    Cihangir N; Aksöz N
    Acta Microbiol Pol; 1996; 45(3-4):291-7. PubMed ID: 9127484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the formation of oxalic acid by Aspergillus niger.
    CLELAND WW; JOHNSON MJ
    J Biol Chem; 1956 Jun; 220(2):595-606. PubMed ID: 13331918
    [No Abstract]   [Full Text] [Related]  

  • 23. Comparative study of the production of extracellular β-glucosidase by four different strains of Aspergillus using submerged fermentation.
    Alarid-García C; Escamilla-Silva EM
    Prep Biochem Biotechnol; 2017 Jul; 47(6):597-610. PubMed ID: 28631979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of the gene encoding alternative oxidase for enhanced glucose consumption in oxalic acid producing Aspergillus niger expressing oxaloacetate hydrolase gene.
    Yoshioka I; Kobayashi K; Kirimura K
    J Biosci Bioeng; 2020 Feb; 129(2):172-176. PubMed ID: 31611058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of platinum recovery from a spent refinery catalyst with a hybrid of oxalic acid produced by Aspergillus niger and mineral acids.
    Malekian H; Salehi M; Biria D
    Waste Manag; 2019 Feb; 85():264-271. PubMed ID: 30803580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum.
    Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S
    Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Studies on the metabolism of acids in Aspergillus niger. V. On the participation of the catabolism of gluconic and citric acid in the accumulation of oxalic acid].
    Müller HM
    Arch Mikrobiol; 1966 Oct; 55(1):81-90. PubMed ID: 5992183
    [No Abstract]   [Full Text] [Related]  

  • 29. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].
    Li L; Lu H; Xia J; Chu J; Zhuang Y; Zhang S
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1089-98. PubMed ID: 26647584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Change in ratio between citric and oxalic acid in Aspergillus niger upon exposure to mutagenic factors].
    Golubtsova VM; Shcherbakova EIa; Runkovskaia LIa; Ermakova VP
    Mikrobiologiia; 1979; 48(6):1060-5. PubMed ID: 119143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger.
    Pedersen H; Christensen B; Hjort C; Nielsen J
    Metab Eng; 2000 Jan; 2(1):34-41. PubMed ID: 10935933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger's exometabolites.
    Boriová K; Urík M; Bujdoš M; Pifková I; Matúš P
    Environ Pollut; 2016 Nov; 218():281-288. PubMed ID: 27443952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.
    Cunningham JE; Kuiack C
    Appl Environ Microbiol; 1992 May; 58(5):1451-8. PubMed ID: 1622211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulmonary oxalosis caused by Aspergillus niger.
    Metzger JB; Garagusi VF; Kerwin DM
    Am Rev Respir Dis; 1984 Mar; 129(3):501-2. PubMed ID: 6703507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.
    Lee SI; Lee KJ; Chun HH; Ha S; Gwak HJ; Kim HM; Lee JH; Choi HJ; Kim HH; Shin TS; Park HW; Kim JC
    Bioprocess Biosyst Eng; 2018 Mar; 41(3):345-352. PubMed ID: 29150701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization.
    Germec M; Turhan I
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1993-2005. PubMed ID: 31414183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the Effects of Aspergillus niger and Aspergillus ficuum on the Removal of Impurities in Feldspar by Bio-beneficiation.
    Arslan V
    Appl Biochem Biotechnol; 2019 Oct; 189(2):437-447. PubMed ID: 31049882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.
    Veana F; Fuentes-Garibay JA; Aguilar CN; Rodríguez-Herrera R; Guerrero-Olazarán M; Viader-Salvadó JM
    Enzyme Microb Technol; 2014 Sep; 63():28-33. PubMed ID: 25039056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum.
    Franz A; Burgstaller W; Müller B; Schinner F
    J Gen Microbiol; 1993 Sep; 139(9):2101-7. PubMed ID: 8245837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New approaches for solubilization of phosphate rocks through solid-state fermentation by optimization of oxalic acid production.
    Rodrigues NA; Buffo MM; Casciatori FP; Farinas CS
    Bioresour Technol; 2024 Sep; 408():131165. PubMed ID: 39069142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.