These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8050811)

  • 1. Electrocatalytic glucose sensor for long-term in vivo use.
    Lager W; von Lucadou I; Nischik H; Nowak T; Preidel W; Ruprecht L; Stanzel MJ; Tegeder V
    Int J Artif Organs; 1994 Mar; 17(3):183-8. PubMed ID: 8050811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable electrocatalytic glucose sensor.
    Lager W; von Lucadou I; Nischik H; Nowak T; Preidel W; Ruprecht L; Stanzel MJ; Tegeder V
    Horm Metab Res; 1994 Nov; 26(11):526-30. PubMed ID: 7875647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro measurements with electrocatalytic glucose sensor in blood.
    Preidel W; Saeger S
    Biomed Biochim Acta; 1989; 48(11-12):897-903. PubMed ID: 2636834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic glucose sensor.
    Lager W; von Lucadou I; Preidel W; Ruprecht L; Saeger S
    Med Biol Eng Comput; 1994 May; 32(3):247-52. PubMed ID: 7934246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of paracetamol, sulfanilamide and ascorbic acid on the electrocatalytic glucose sensor.
    Saeger S; Preidel W; Ruprecht L
    Horm Metab Res; 1992 Nov; 24(11):504-7. PubMed ID: 1452114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development and evaluation of an electrocatalytic glucose sensor for diabetes therapy].
    Preidel W; Saeger S; Stanzel MJ; Richter GJ; Ruprecht L
    Biomed Tech (Berl); 1993 Nov; 38(11):282-90. PubMed ID: 8123768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of urea on the glucose measurement by electrocatalytic sensor in the extracorporeal blood circulation of a sheep.
    Saeger S; Preidel W; von Lucadou I; Ruprecht L; Lager W
    Biomed Biochim Acta; 1991; 50(7):885-91. PubMed ID: 1759967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo experiment with the electrocatalytic glucose sensor in sheep.
    Preidel W; von Lucadou I; Lager W; Saeger S; Ruprecht L
    Biosens Bioelectron; 1993; 8(6):299-306. PubMed ID: 8251132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrocatalytic glucose sensor.
    von Lucadou I; Luft G; Preidel W; Richter GJ
    Horm Metab Res Suppl; 1988; 20():41-3. PubMed ID: 3074037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrocatalytic glucose sensor for in-vivo application.
    Preidel W; Saeger S; von Lucadou I; Lager W
    Biomed Instrum Technol; 1991; 25(3):215-9. PubMed ID: 1855107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A potentially implantable enzyme electrode for amperometric measurement of glucose.
    Kerner W; Zier H; Steinbach G; Brückel J; Pfeiffer EF; Weiss T; Cammann K; Planck H
    Horm Metab Res Suppl; 1988; 20():8-13. PubMed ID: 3248792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GOD-H2O2-electrode as an approach to implantable glucose sensors.
    Abel P; Fischer U; Brunstein E; Ertle R
    Horm Metab Res Suppl; 1988; 20():26-9. PubMed ID: 3248787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans.
    Gilligan BC; Shults M; Rhodes RK; Jacobs PG; Brauker JH; Pintar TJ; Updike SJ
    Diabetes Technol Ther; 2004 Jun; 6(3):378-86. PubMed ID: 15198842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor.
    Chen T; Schmidtke DW; Heller A
    Clin Chem Lab Med; 2002 Aug; 40(8):786-9. PubMed ID: 12392305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model.
    Gilligan BJ; Shults MC; Rhodes RK; Updike SJ
    Diabetes Care; 1994 Aug; 17(8):882-7. PubMed ID: 7956636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing.
    Gu S; Lu Y; Ding Y; Li L; Song H; Wang J; Wu Q
    Biosens Bioelectron; 2014 May; 55():106-12. PubMed ID: 24368227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-enzymatic electrochemical glucose sensor based on NiMoO₄ nanorods.
    Wang D; Cai D; Huang H; Liu B; Wang L; Liu Y; Li H; Wang Y; Li Q; Wang T
    Nanotechnology; 2015 Apr; 26(14):145501. PubMed ID: 25772142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.