These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8051002)

  • 21. Osmoregulated periplasmic glucans in Proteobacteria.
    Bohin JP
    FEMS Microbiol Lett; 2000 May; 186(1):11-9. PubMed ID: 10779706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Glutamine synthetase of the rhizobacterium Azospirillum brasilense: specific features of catalysis and regulation].
    Antoniuk LP
    Prikl Biokhim Mikrobiol; 2007; 43(3):272-8. PubMed ID: 17619573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmoregulated periplasmic glucans of the free-living photosynthetic bacterium Rhodobacter sphaeroides.
    Talaga P; Cogez V; Wieruszeski JM; Stahl B; Lemoine J; Lippens G; Bohin JP
    Eur J Biochem; 2002 May; 269(10):2464-72. PubMed ID: 12027884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7.
    Lerner A; Castro-Sowinski S; Lerner H; Okon Y; Burdman S
    FEMS Microbiol Lett; 2009 Nov; 300(1):75-82. PubMed ID: 19765087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A protein-glucan intermediate during paramylon synthesis.
    Tomos AD; Northcote DH
    Biochem J; 1978 Jul; 174(1):283-90. PubMed ID: 100105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of Mesorhizobium huakuii cyclic beta-glucan.
    Choma A; Komaniecka I
    Acta Biochim Pol; 2003; 50(4):1273-81. PubMed ID: 14740013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.
    Cesari AB; Paulucci NS; Biasutti MA; Reguera YB; Gallarato LA; Kilmurray C; Dardanelli MS
    J Appl Microbiol; 2016 Jan; 120(1):185-94. PubMed ID: 26535566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of Streptococcus sanguinis glucans formed under various conditions.
    Kopec LK; Vacca Smith AM; Wunder D; Ng-Evans L; Bowen WH
    Caries Res; 2001; 35(1):67-74. PubMed ID: 11125200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural studies of the polysaccharides from the lipopolysaccharides of Azospirillum brasilense Sp246 and SpBr14.
    Sigida EN; Fedonenko YP; Shashkov AS; Grinev VS; Zdorovenko EL; Konnova SA; Ignatov VV; Knirel YA
    Carbohydr Res; 2014 Oct; 398():40-4. PubMed ID: 25240180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of cell-associated glucosyltransferase synthesizing insoluble glucan from Streptococcus mutans serotype c.
    Mukasa H; Shimamura A; Tsumori H
    J Gen Microbiol; 1989 Jul; 135(7):2055-63. PubMed ID: 2533246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osmoregulated periplasmic glucans of Erwinia chrysanthemi.
    Cogez V; Talaga P; Lemoine J; Bohin JP
    J Bacteriol; 2001 May; 183(10):3127-33. PubMed ID: 11325941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.
    Kaur S; Mishra MN; Tripathi AK
    FEMS Microbiol Lett; 2009 Oct; 299(2):149-58. PubMed ID: 19694814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of primers in glucan synthesis by glucosyltransferases from Streptococcus mutans strain OMZ176.
    Koga T; Sato S; Inoue M; Takeuchi K; Furuta T; Hamada S
    J Gen Microbiol; 1983 Mar; 129(3):751-4. PubMed ID: 6192201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Ionic and Osmotic Strength on the Glucosyltransferase of Rhizobium meliloti Responsible for Cyclic beta-(1,2)-Glucan Biosynthesis.
    Ingram-Smith C; Miller KJ
    Appl Environ Microbiol; 1998 Apr; 64(4):1290-7. PubMed ID: 16349538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and characterization of a fur homologue from Azospirillum brasilense Sp7.
    Alahari A; Tripathi AK; Le Rudulier D
    Curr Microbiol; 2006 Feb; 52(2):123-7. PubMed ID: 16450071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (1-3)beta-D-glucan.
    Ribas JC; Diaz M; Duran A; Perez P
    J Bacteriol; 1991 Jun; 173(11):3456-62. PubMed ID: 1828464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and properties of extracellular glucosyltransferase synthesizing 1,6-, 1,3-alpha-D-glucan from Streptococcus mutans serotype a.
    Tsumori H; Shimamura A; Mukasa H
    J Gen Microbiol; 1985 Dec; 131(12):3347-53. PubMed ID: 2937877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of glucosyltransferases from Streptococcus mutans 6715.
    Furuta T; Koga T; Nisizawa T; Okahashi N; Hamada S
    J Gen Microbiol; 1985 Feb; 131(2):285-93. PubMed ID: 2580046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Relationship between lectin, alpha-, beta-glucosidase, and beta-galactosidase activities of Azospirillum].
    Alen'kina SA; Nikitina VE; Borisova-Golovko MV
    Mikrobiologiia; 2001; 70(5):647-50. PubMed ID: 11763784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of dextran-independent α-(1→3)-glucan synthesis by Streptococcus sobrinus glucosyltransferase I.
    Komatsu H; Abe Y; Eguchi K; Matsuno H; Matsuoka Y; Sadakane T; Inoue T; Fukui K; Kodama T
    FEBS J; 2011 Feb; 278(3):531-40. PubMed ID: 21182591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.