BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8051003)

  • 1. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
    Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN
    Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides.
    Marty-Teysset C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Biol Chem; 1995 Oct; 270(43):25370-6. PubMed ID: 7592702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proton motive force generated in Leuconostoc oenos by L-malate fermentation.
    Salema M; Lolkema JS; San Romão MV; Lourero Dias MC
    J Bacteriol; 1996 Jun; 178(11):3127-32. PubMed ID: 8655490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport.
    Marty-Teysset C; Lolkema JS; Schmitt P; Diviès C; Konings WN
    J Bacteriol; 1996 Nov; 178(21):6209-15. PubMed ID: 8892820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
    Salema M; Capucho I; Poolman B; San Romão MV; Dias MC
    J Bacteriol; 1996 Sep; 178(18):5537-9. PubMed ID: 8808948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae.
    Van der Rest ME; Abee T; Molenaar D; Konings WN
    Eur J Biochem; 1991 Jan; 195(1):71-7. PubMed ID: 1991478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.
    Molenaar D; Bosscher JS; ten Brink B; Driessen AJ; Konings WN
    J Bacteriol; 1993 May; 175(10):2864-70. PubMed ID: 8387991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures.
    Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A
    J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species.
    Bandell M; Lhotte ME; Marty-Teysset C; Veyrat A; Prévost H; Dartois V; Diviès C; Konings WN; Lolkema JS
    Appl Environ Microbiol; 1998 May; 64(5):1594-600. PubMed ID: 9572922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
    Salou P; Loubiere P; Pareilleux A
    Appl Environ Microbiol; 1994 May; 60(5):1459-66. PubMed ID: 8017930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of scalar protons in metabolic energy generation in lactic acid bacteria.
    Lolkema JS; Poolman B; Konings WN
    J Bioenerg Biomembr; 1995 Aug; 27(4):467-73. PubMed ID: 8595982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family.
    Bandell M; Ansanay V; Rachidi N; Dequin S; Lolkema JS
    J Biol Chem; 1997 Jul; 272(29):18140-6. PubMed ID: 9218448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells.
    Brune A; Gonzalez P; Goren R; Zehavi U; Echeverria E
    J Membr Biol; 1998 Dec; 166(3):197-203. PubMed ID: 9843593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroneutral, HCO3(-)-independent, pH gradient-dependent uphill transport of Cl- by ileal brush-border membrane vesicles. Possible role in the pathogenesis of chloridorrhea.
    Vasseur M; Caüzac M; Alvarado F
    Biochem J; 1989 Nov; 263(3):775-84. PubMed ID: 2597129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dextransucrase secretion in Leuconostoc mesenteroides depends on the presence of a transmembrane proton gradient.
    Otts DR; Day DF
    J Bacteriol; 1988 Nov; 170(11):5006-11. PubMed ID: 2972694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.