These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8051113)

  • 1. Intron-containing T4 bacteriophage gene sunY encodes an anaerobic ribonucleotide reductase.
    Young P; Ohman M; Xu MQ; Shub DA; Sjöberg BM
    J Biol Chem; 1994 Aug; 269(32):20229-32. PubMed ID: 8051113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage T4 gene 55.9 encodes an activity required for anaerobic ribonucleotide reduction.
    Young P; Ohman M; Sjöberg BM
    J Biol Chem; 1994 Nov; 269(45):27815-8. PubMed ID: 7961708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage T4 anaerobic ribonucleotide reductase contains a stable glycyl radical at position 580.
    Young P; Andersson J; Sahlin M; Sjöberg BM
    J Biol Chem; 1996 Aug; 271(34):20770-5. PubMed ID: 8702830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of mobile group I introns: recognition of intron sequences by an intron-encoded endonuclease.
    Loizos N; Tillier ER; Belfort M
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):11983-7. PubMed ID: 7991569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene.
    Sun X; Harder J; Krook M; Jörnvall H; Sjöberg BM; Reichard P
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):577-81. PubMed ID: 8421692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.
    Lal SK; Hall DH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):943-9. PubMed ID: 8240371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.
    Khan AU; Lal SK; Ahmad M
    Biochem Biophys Res Commun; 1998 Jan; 242(1):10-5. PubMed ID: 9439601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and characterization of two nucleotide-binding sites on the anaerobic ribonucleotide reductase from bacteriophage T4.
    Olcott MC; Andersson J; Sjöberg BM
    J Biol Chem; 1998 Sep; 273(38):24853-60. PubMed ID: 9733790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two active site asparagines are essential for the reaction mechanism of the class III anaerobic ribonucleotide reductase from bacteriophage T4.
    Andersson J; Bodevin S; Westman M; Sahlin M; Sjöberg BM
    J Biol Chem; 2001 Nov; 276(44):40457-63. PubMed ID: 11526118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phage T4 nrdB intron: a deletion mutant of a version found in the wild.
    Eddy SR; Gold L
    Genes Dev; 1991 Jun; 5(6):1032-41. PubMed ID: 2044951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.
    Khan AU; Ahmad M; Lal SK
    Biochem Biophys Res Commun; 2000 Feb; 268(2):359-64. PubMed ID: 10679208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components.
    Jaeger L; Westhof E; Michel F
    J Mol Biol; 1993 Nov; 234(2):331-46. PubMed ID: 8230218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron.
    Sjöberg BM; Hahne S; Mathews CZ; Mathews CK; Rand KN; Gait MJ
    EMBO J; 1986 Aug; 5(8):2031-6. PubMed ID: 3530746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort.
    Landthaler M; Begley U; Lau NC; Shub DA
    Nucleic Acids Res; 2002 May; 30(9):1935-43. PubMed ID: 11972330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the T4 phage ribonucleotide reductase B1 subunit gene and the nucleotide sequence of its upstream and 5' coding regions.
    Chu FK; Maley GF; Wang AM; Maley F
    Gene; 1987; 57(1):143-8. PubMed ID: 3322944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introns and intein coding sequence in the ribonucleotide reductase genes of Bacillus subtilis temperate bacteriophage SPbeta.
    Lazarevic V; Soldo B; Düsterhöft A; Hilbert H; Mauël C; Karamata D
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1692-7. PubMed ID: 9465078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A megaplasmid-borne anaerobic ribonucleotide reductase in Alcaligenes eutrophus H16.
    Siedow A; Cramm R; Siddiqui RA; Friedrich B
    J Bacteriol; 1999 Aug; 181(16):4919-28. PubMed ID: 10438763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.