BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8051135)

  • 1. Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a sigma 54-dependent transcriptional activator.
    Lee JH; Scholl D; Nixon BT; Hoover TR
    J Biol Chem; 1994 Aug; 269(32):20401-9. PubMed ID: 8051135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation.
    Xu H; Kelly MT; Nixon BT; Hoover TR
    Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation.
    Wang YK; Hoover TR
    J Bacteriol; 1997 Sep; 179(18):5812-9. PubMed ID: 9294439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD.
    Labes M; Finan TM
    J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase.
    Lee JH; Hoover TR
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9702-6. PubMed ID: 7568201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD.
    Ledebur H; Nixon BT
    Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved region in the sigma54-dependent activator DctD is involved in both binding to RNA polymerase and coupling ATP hydrolysis to activation.
    Wang YK; Lee JH; Brewer JM; Hoover TR
    Mol Microbiol; 1997 Oct; 26(2):373-86. PubMed ID: 9383161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD.
    Wang YK; Park S; Nixon BT; Hoover TR
    J Bacteriol; 2003 Oct; 185(20):6215-9. PubMed ID: 14526036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD.
    Watson RJ
    Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the phosphate-binding loop of Rhizobium meliloti DctD, a sigma54-dependent activator.
    Gao Y; Wang YK; Hoover TR
    J Bacteriol; 1998 May; 180(10):2792-5. PubMed ID: 9573172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti.
    Sojda J; Gu B; Lee J; Hoover TR; Nixon BT
    Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes.
    Lee HS; Berger DK; Kustu S
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2266-70. PubMed ID: 8460132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.
    Labes M; Rastogi V; Watson R; Finan TM
    J Bacteriol; 1993 May; 175(9):2662-73. PubMed ID: 8478331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repressor forms of the enhancer-binding protein NrtC: some fail in coupling ATP hydrolysis to open complex formation by sigma 54-holoenzyme.
    North AK; Weiss DS; Suzuki H; Flashner Y; Kustu S
    J Mol Biol; 1996 Jul; 260(3):317-31. PubMed ID: 8757796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator.
    Xu H; Gu B; Nixon BT; Hoover TR
    J Bacteriol; 2004 Jun; 186(11):3499-507. PubMed ID: 15150237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of integration host factor in stimulating transcription from the sigma 54-dependent nifH promoter.
    Santero E; Hoover TR; North AK; Berger DK; Porter SC; Kustu S
    J Mol Biol; 1992 Oct; 227(3):602-20. PubMed ID: 1404379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative binding of DctD to the dctA upstream activation sequence of Rhizobium meliloti is enhanced in a constitutively active truncated mutant.
    Scholl D; Nixon BT
    J Biol Chem; 1996 Oct; 271(42):26435-42. PubMed ID: 8824302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module.
    Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT
    Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex.
    Morett E; Buck M
    J Mol Biol; 1989 Nov; 210(1):65-77. PubMed ID: 2685331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters.
    Ledebur H; Gu B; Sojda J; Nixon BT
    J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.