These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8051147)
1. Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. Hresko RC; Kruse M; Strube M; Mueckler M J Biol Chem; 1994 Aug; 269(32):20482-8. PubMed ID: 8051147 [TBL] [Abstract][Full Text] [Related]
2. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. Sato M; Mueckler M J Biol Chem; 1999 Aug; 274(35):24721-5. PubMed ID: 10455140 [TBL] [Abstract][Full Text] [Related]
3. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Seatter MJ; Kane S; Porter LM; Arbuckle MI; Melvin DR; Gould GW Biochemistry; 1997 May; 36(21):6401-7. PubMed ID: 9174356 [TBL] [Abstract][Full Text] [Related]
4. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. Preston GM; Jung JS; Guggino WB; Agre P J Biol Chem; 1994 Jan; 269(3):1668-73. PubMed ID: 7507481 [TBL] [Abstract][Full Text] [Related]
5. Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter. Hruz PW; Mueckler MM J Biol Chem; 1999 Dec; 274(51):36176-80. PubMed ID: 10593902 [TBL] [Abstract][Full Text] [Related]
6. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. Mueckler M; Makepeace C J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254 [TBL] [Abstract][Full Text] [Related]
7. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function. Monden I; Olsowski A; Krause G; Keller K Biol Chem; 2001 Nov; 382(11):1551-8. PubMed ID: 11767944 [TBL] [Abstract][Full Text] [Related]
8. GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. Piper RC; Tai C; Kulesza P; Pang S; Warnock D; Baenziger J; Slot JW; Geuze HJ; Puri C; James DE J Cell Biol; 1993 Jun; 121(6):1221-32. PubMed ID: 8509445 [TBL] [Abstract][Full Text] [Related]
9. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter. Olsowski A; Monden I; Keller K Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964 [TBL] [Abstract][Full Text] [Related]
10. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985 [TBL] [Abstract][Full Text] [Related]
11. Membrane topology of the human Na+/glucose cotransporter SGLT1. Turk E; Kerner CJ; Lostao MP; Wright EM J Biol Chem; 1996 Jan; 271(4):1925-34. PubMed ID: 8567640 [TBL] [Abstract][Full Text] [Related]
12. Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding. Mueckler M; Weng W; Kruse M J Biol Chem; 1994 Aug; 269(32):20533-8. PubMed ID: 8051152 [TBL] [Abstract][Full Text] [Related]
13. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. Garcia JC; Strube M; Leingang K; Keller K; Mueckler MM J Biol Chem; 1992 Apr; 267(11):7770-6. PubMed ID: 1560011 [TBL] [Abstract][Full Text] [Related]
14. Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter. Alisio A; Mueckler M J Biol Chem; 2004 Jun; 279(25):26540-5. PubMed ID: 15073187 [TBL] [Abstract][Full Text] [Related]
15. Two regions of GLUT 2 glucose transporter protein are responsible for its distinctive affinity for glucose. Buchs A; Wu L; Morita H; Whitesell RR; Powers AC Endocrinology; 1995 Oct; 136(10):4224-30. PubMed ID: 7664639 [TBL] [Abstract][Full Text] [Related]
16. Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis. Popov M; Li J; Reithmeier RA Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):269-79. PubMed ID: 10191257 [TBL] [Abstract][Full Text] [Related]
17. Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Liu XY; Matherly LH Biochim Biophys Acta; 2002 Aug; 1564(2):333-42. PubMed ID: 12175915 [TBL] [Abstract][Full Text] [Related]
18. Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway. Mueckler M; Makepeace C J Biol Chem; 1997 Nov; 272(48):30141-6. PubMed ID: 9374494 [TBL] [Abstract][Full Text] [Related]
19. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity. Liu Q; Vera JC; Peng H; Golde DW Biochemistry; 2001 Jul; 40(26):7874-81. PubMed ID: 11425315 [TBL] [Abstract][Full Text] [Related]
20. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Hallén S; Mareninova O; Brändén M; Sachs G Biochemistry; 2002 Jun; 41(23):7253-66. PubMed ID: 12044156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]