These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 8051177)
1. An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH. Serizawa H; Conaway JW; Conaway RC J Biol Chem; 1994 Aug; 269(32):20750-6. PubMed ID: 8051177 [TBL] [Abstract][Full Text] [Related]
2. Functional correlation among Gal11, transcription factor (TF) IIE, and TFIIH in Saccharomyces cerevisiae. Gal11 and TFIIE cooperatively enhance TFIIH-mediated phosphorylation of RNA polymerase II carboxyl-terminal domain sequences. Sakurai H; Fukasawa T J Biol Chem; 1998 Apr; 273(16):9534-8. PubMed ID: 9545282 [TBL] [Abstract][Full Text] [Related]
3. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Maxon ME; Goodrich JA; Tjian R Genes Dev; 1994 Mar; 8(5):515-24. PubMed ID: 7926747 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Ohkuma Y; Hashimoto S; Wang CK; Horikoshi M; Roeder RG Mol Cell Biol; 1995 Sep; 15(9):4856-66. PubMed ID: 7651404 [TBL] [Abstract][Full Text] [Related]
5. Modulation of TFIIH-associated kinase activity by complex formation and its relationship with CTD phosphorylation of RNA polymerase II. Watanabe Y; Fujimoto H; Watanabe T; Maekawa T; Masutani C; Hanaoka F; Ohkuma Y Genes Cells; 2000 May; 5(5):407-23. PubMed ID: 10886368 [TBL] [Abstract][Full Text] [Related]
6. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Ohkuma Y; Roeder RG Nature; 1994 Mar; 368(6467):160-3. PubMed ID: 8166891 [TBL] [Abstract][Full Text] [Related]
7. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. Park CH; Mu D; Reardon JT; Sancar A J Biol Chem; 1995 Mar; 270(9):4896-902. PubMed ID: 7876263 [TBL] [Abstract][Full Text] [Related]
8. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Dubois MF; Vincent M; Vigneron M; Adamczewski J; Egly JM; Bensaude O Nucleic Acids Res; 1997 Feb; 25(4):694-700. PubMed ID: 9016617 [TBL] [Abstract][Full Text] [Related]
9. A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription. Mäkelä TP; Parvin JD; Kim J; Huber LJ; Sharp PA; Weinberg RA Proc Natl Acad Sci U S A; 1995 May; 92(11):5174-8. PubMed ID: 7761469 [TBL] [Abstract][Full Text] [Related]
10. A mouse in vitro transcription system reconstituted from highly purified RNA polymerase II, TFIIH and recombinant TBP, TFIIB, TFIIE and TFIIF. Kotova I; Chabes AL; Segerman B; Flodell S; Thelander L; Björklund S Eur J Biochem; 2001 Aug; 268(16):4527-36. PubMed ID: 11502214 [TBL] [Abstract][Full Text] [Related]
11. Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. Kershnar E; Wu SY; Chiang CM J Biol Chem; 1998 Dec; 273(51):34444-53. PubMed ID: 9852112 [TBL] [Abstract][Full Text] [Related]
12. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176 [TBL] [Abstract][Full Text] [Related]
13. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. Dvir A; Garrett KP; Chalut C; Egly JM; Conaway JW; Conaway RC J Biol Chem; 1996 Mar; 271(13):7245-8. PubMed ID: 8631733 [TBL] [Abstract][Full Text] [Related]
14. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. Marshall NF; Peng J; Xie Z; Price DH J Biol Chem; 1996 Oct; 271(43):27176-83. PubMed ID: 8900211 [TBL] [Abstract][Full Text] [Related]
15. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Shiekhattar R; Mermelstein F; Fisher RP; Drapkin R; Dynlacht B; Wessling HC; Morgan DO; Reinberg D Nature; 1995 Mar; 374(6519):283-7. PubMed ID: 7533895 [TBL] [Abstract][Full Text] [Related]
16. The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. Chambers RS; Wang BQ; Burton ZF; Dahmus ME J Biol Chem; 1995 Jun; 270(25):14962-9. PubMed ID: 7797476 [TBL] [Abstract][Full Text] [Related]
17. Cyclin-dependent kinase inhibitor p16INK4A inhibits phosphorylation of RNA polymerase II by general transcription factor TFIIH. Serizawa H J Biol Chem; 1998 Mar; 273(10):5427-30. PubMed ID: 9488660 [TBL] [Abstract][Full Text] [Related]
18. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. Roy R; Schaeffer L; Humbert S; Vermeulen W; Weeda G; Egly JM J Biol Chem; 1994 Apr; 269(13):9826-32. PubMed ID: 7511595 [TBL] [Abstract][Full Text] [Related]
19. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. Moreland RJ; Tirode F; Yan Q; Conaway JW; Egly JM; Conaway RC J Biol Chem; 1999 Aug; 274(32):22127-30. PubMed ID: 10428772 [TBL] [Abstract][Full Text] [Related]
20. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. Yankulov KY; Bentley DL EMBO J; 1997 Apr; 16(7):1638-46. PubMed ID: 9130709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]